數(shù)列{an}的前n項(xiàng)和Sn=n2-2n+5,則它的通項(xiàng)公式是
 
考點(diǎn):數(shù)列的求和
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:在數(shù)列遞推式中取n=1求首項(xiàng),當(dāng)n≥2時(shí),得到an=Sn-Sn-1=3-2n,驗(yàn)證首項(xiàng)后得答案.
解答: 解:由Sn=n2-2n+5,
當(dāng)n=1時(shí),a1=S1=4;
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-2n+5-[(n-1)2-2(n-1)+5]=3-2n.
驗(yàn)證n=1時(shí)上式不成立.
an=
4,n=1
3-2n,n≥2

故答案為:an=
4,n=1
3-2n,n≥2
點(diǎn)評:本題考查了由數(shù)列的前n項(xiàng)和求數(shù)列的通項(xiàng)公式,關(guān)鍵是注意驗(yàn)證n=1時(shí)的情況,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,n∈N*,則實(shí)數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-(2+4m)x+8m=0},B={x|x<0},若命題“A∩B=∅”是假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=9,b=10,A=60°,則這樣的三角形解的個(gè)數(shù)為( 。
A、一解B、兩解
C、無解D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2-(3a-1)x+a2在區(qū)間(1,+∞)上單調(diào)遞增,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y是正實(shí)數(shù),且x+3y=1,求當(dāng)x、y分別取何值時(shí),
1
x
+
1
y
的值最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2ax+2,
(Ⅰ)若f(x)在(-∞, 
1
2
]
是減函數(shù),在[
1
2
, +∞)
是增函數(shù),求實(shí)數(shù)a的值;
(Ⅱ)求實(shí)數(shù)a的取值范圍,使f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù),并指出相應(yīng)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,n∈N*,an>0,數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+1=
2
Sn+1+Sn-2

(1)求{Sn}的通項(xiàng)公式;
(2)設(shè){bk}是{Sn}中的按從小到大順序組成的整數(shù)數(shù)列.
①求b3
②存在N(N∈N*),當(dāng)n≤N時(shí),使得在{Sn}中,數(shù)列{bk}有且只有20項(xiàng),求N的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我國是水資源匱乏的國家,為鼓勵(lì)節(jié)約用水,某市打算出臺(tái)一項(xiàng)水費(fèi)政策措施.規(guī)定:每季度每人用水量不超過5噸時(shí),每噸水費(fèi)收基本價(jià)1.3元;若超過5噸而不超過6噸時(shí),超過部分的水費(fèi)按基本價(jià)3倍收;若超過6噸而不超過7噸時(shí),超過部分的水費(fèi)按基本價(jià)5倍收取.某人本季度實(shí)際用水量為x(0≤x≤7)噸,應(yīng)交水費(fèi)為f(x)元.
(Ⅰ)求f(4),f(5.5),f(6.5)的值;
(Ⅱ)試求出函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案