分析 (1)由AD∥BC,知異面直線BC與SD所成角是∠SDA或其補(bǔ)角,由此能求出異面直線BC與SD所成角的大小.
(2)推導(dǎo)出SA⊥BC,AB⊥BC,從而B(niǎo)C⊥面SAB,進(jìn)而SB是SC在平面SAB上的射影,∠CSB是SC與底面SAB所成角,由此能求出SC與底面SAB所成角的正切值.
(3)三棱錐D-SBC的體積:VD-SBC=VA-SBC=VS-ABC,由此能求出結(jié)果.
解答 解:(1)∵AD∥BC,∴異面直線BC與SD所成角是∠SDA或其補(bǔ)角,
∵SA⊥平面ABCD,AD?平面ABCD,
∴SA⊥AD,在Rt△SAD中,∵SA=AD,∴∠SDA=45°,
∴異面直線BC與SD所成角的大小為45o.
(2)∵SA⊥面ABCD,BC?面ABCD,∴SA⊥BC,
又∵AB⊥BC,SA∩AB=A,
∴BC⊥面SAB,
∴SB是SC在平面SAB上的射影,
∴∠CSB是SC與底面SAB所成角
在Rt△CSB中tan∠CSB=$\frac{BC}{SC}=\frac{2}{{\sqrt{2}}}=\sqrt{2}$,
∴SC與底面SAB所成角的正切值為$\sqrt{2}$.
(3)∵AD∥BC,∴D到平面SBC的距離與A到平面SBC的距離相等,
∵SA⊥平面ABC,
∴三棱錐D-SBC的體積:
VD-SBC=VA-SBC=VS-ABC
=$\frac{1}{3}×{S}_{△ABC}×SA$=$\frac{1}{3}×(\frac{1}{2}×1×2)×1$=$\frac{1}{3}$.
點(diǎn)評(píng) 本題考查異面直線所成角的求法,考查線面角的正弦值的求法,考查三棱錐的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想、數(shù)形結(jié)合思想,考查創(chuàng)新意識(shí)、應(yīng)用意識(shí),是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {3,5,7} | B. | {3,7} | C. | {4,5,6} | D. | {5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -21007excosx | B. | -21007ex(cosx-sinx) | ||
C. | 21008exsinx | D. | 21008ex(sinx+cosx) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com