15.已知函數(shù)f(x)=$\frac{1}{{3}^{x}+\sqrt{3}}$
(1)分別計算f(0)+f(1);f(-1)+f(2);f(-2015)+f(2016)的值;
(2)試根據(jù)(1)的結(jié)果歸納猜想出一般性結(jié)論,并給出證明.

分析 (1)由f(x)=$\frac{1}{{3}^{x}+\sqrt{3}}$,利用函數(shù)的性質(zhì)能求出f(0)+f(1);f(-1)+f(2);f(-2015)+f(2016)的值.
(2)猜測$f(x)+f(1-x)=\frac{\sqrt{3}}{3}$.再利用函數(shù)性質(zhì)進(jìn)行證明.

解答 解:(1)∵f(x)=$\frac{1}{{3}^{x}+\sqrt{3}}$
∴f(0)+f(1)=$\frac{1}{{3}^{0}+\sqrt{3}}+\frac{1}{3+\sqrt{3}}$=$\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}(1+\sqrt{3})}$=$\frac{\sqrt{3}+1}{\sqrt{3}(1+\sqrt{3})}$=$\frac{\sqrt{3}}{3}$;
f(-1)+f(2)=$\frac{1}{{3}^{-1}+\sqrt{3}}+\frac{1}{{3}^{2}+\sqrt{3}}$=$\frac{1}{\frac{1}{3}+\sqrt{3}}$+$\frac{1}{3\sqrt{3}(\frac{1}{3}+\sqrt{3})}$=$\frac{3\sqrt{3}+1}{3\sqrt{3}(\frac{1}{3}+\sqrt{3})}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$;
f(-2015)+f(2016)=$\frac{1}{{3}^{-2015}+\sqrt{3}}+\frac{1}{{3}^{2016}+\sqrt{3}}$=$\frac{1}{{3}^{2016}+\sqrt{3}}$+$\frac{{3}^{2016}}{\sqrt{3}(\sqrt{3}+{3}^{2016})}$=$\frac{\sqrt{3}+{3}^{2016}}{\sqrt{3}(\sqrt{3}+{3}^{2016})}$=$\frac{\sqrt{3}}{3}$.
(2)由(1)的結(jié)果可以猜測$f(x)+f(1-x)=\frac{\sqrt{3}}{3}$.
證明:f(x)+f(1-x)=$\frac{1}{{3}^{x}+\sqrt{3}}+\frac{1}{{3}^{1-x}+\sqrt{3}}$
=$\frac{1}{{3}^{x}+\sqrt{3}}+\frac{{3}^{x}}{3+\sqrt{3}•{3}^{x}}$
=$\frac{1}{{3}^{x}+\sqrt{3}}+\frac{{3}^{x}}{\sqrt{3}(\sqrt{3}+{3}^{x})}$
=$\frac{\sqrt{3}+{3}^{x}}{\sqrt{3}(\sqrt{3}+{3}^{x})}$=$\frac{\sqrt{3}}{3}$.
∴f(x)+f(1-x)=$\frac{\sqrt{3}}{3}$.

點評 本題考查函數(shù)值的求法,是中檔題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知質(zhì)點以速度v(t)=$\left\{\begin{array}{l}{3{t}^{2}-3,t∈(0,2]}\\{13-2t,t∈(2,5]}\end{array}\right.$(m/s)在運動,則該質(zhì)點從時刻t=0到時刻t=5(s)時所經(jīng)過的路程為( 。
A.20mB.22mC.24mD.26m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若新高考方案正式實施,甲,乙兩名同學(xué)要從政治,歷史,物理,化學(xué)四門功課中分別選取兩門功課學(xué)習(xí),則他們選擇的兩門功課都不相同的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.點M在拋物線C:x2=2py(p>0)上,以M為圓心的圓與x軸相切于點N,過點N作直線與C相切于點P(異于點O),OP的中點為Q,則(  )
A.點Q在圓M內(nèi)B.點Q在圓M上
C.點Q在圓M外D.以上結(jié)論都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如果P1,P2,P3是拋物線C:y2=8x上的點,它們的橫坐標(biāo)依次為x1,x2,x3.F是拋物線C的焦點,若x1+x2+x3=10,則|P1F|+|P2F|+|P3F|=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)y=-(n+1)x2+2(1-n)x+1在-1≤x≤1時,y隨著x的增大而增大,求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=axlnx,x∈(0,+∞),其中a為實數(shù),f′(x)為f(x)的導(dǎo)函數(shù),若f′(1)=3,則a的值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=PB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD且BC=4,點M為PC的中點,點E為BC邊上的點.
(Ⅰ)求證:平面ADM⊥平面PBC;
(Ⅱ)當(dāng)$\overrightarrow{BE}$=$\frac{1}{2}$$\overrightarrow{BC}$時,求點E到平面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,AB為圓O的直徑,點C為圓O上的一點,且BC=$\sqrt{3}$AC,點D為線段AB上一點,且AD=$\frac{1}{3}$DB.PD垂直于圓O所在的平面.
(Ⅰ)求證:CD⊥平面PAB;
(Ⅱ)若PD=BD,求二面角C-PB-A的余弦值.

查看答案和解析>>

同步練習(xí)冊答案