分析 (Ⅰ)取PB中點(diǎn)N,連結(jié)MN、AN,證明四邊形ADMN為平行四邊形,AN⊥平面PBC,可得平面ADM⊥平面PBC;
(Ⅱ)當(dāng)$\overrightarrow{BE}$=$\frac{1}{2}$$\overrightarrow{BC}$時(shí),E是BC的中點(diǎn),DE=CE=2,利用VP-CDE=VE-PCD,求點(diǎn)E到平面PDC的距離.
解答 (Ⅰ)證明:取PB中點(diǎn)N,連結(jié)MN、AN,則
∵M(jìn)是PC中點(diǎn),∴MN∥BC,MN=$\frac{1}{2}$BC=2,
又∵BC∥AD,∴MN∥AD,MN=AD,
∴四邊形ADMN為平行四邊形,
∵AP⊥AD,AB⊥AD,∴AD⊥平面PAB,
∴AD⊥AN,∴AN⊥MN,
∵AP=AB,∴AN⊥PB,∴AN⊥平面PBC,
∵AN?平面ADM,
∴平面ADM⊥平面PBC;
(Ⅱ)解:∵$\overrightarrow{BE}$=$\frac{1}{2}$$\overrightarrow{BC}$,
∴E是BC的中點(diǎn),∴DE=CE=2,
△PDC中,PD=CD=2$\sqrt{2}$,PC=$\sqrt{P{A}^{2}+A{C}^{2}}$=2$\sqrt{6}$,
∴S△PDC=2$\sqrt{3}$,
設(shè)點(diǎn)E到平面PDC的距離為h.則
∵VP-CDE=VE-PCD,
∴$\frac{1}{3}×2×\frac{1}{2}×2×2=\frac{1}{3}×2\sqrt{3}×h$,
∴h=$\frac{2\sqrt{3}}{3}$,
∴點(diǎn)E到平面PDC的距離為$\frac{2\sqrt{3}}{3}$.
點(diǎn)評(píng) 本小題主要考查線面以及面面的垂直關(guān)系、點(diǎn)到平面的距離等問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,e-1] | B. | {1}∪($\frac{1}{e}$+1,e-1] | C. | [1,$\frac{1}{e}$+1] | D. | ($\frac{1}{e}$+1,e-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | $\sqrt{10}$ | C. | 4 | D. | $\frac{2+\sqrt{10}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 當(dāng)x=2時(shí),y有最小值$\frac{4\sqrt{3}}{3}$ | B. | 當(dāng)x=2時(shí),有最大值$\frac{4\sqrt{3}}{3}$ | ||
C. | 當(dāng)x=$\sqrt{2}$時(shí),y有最小值2 | D. | 當(dāng)x=$\sqrt{2}$時(shí),y有最大值2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時(shí)間代號(hào)x | 1 | 2 | 3 | 4 | 5 |
儲(chǔ)蓄存款y (千億元) | 5 | 6 | 7 | 8 | 10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com