19.設函數(shù)y=-x2+l的切線l與x軸,y軸的交點分別為A,B,O為坐標原點,則△OAB的面積的最小值為$\frac{{4\sqrt{3}}}{9}$.

分析 設切點為P((m,-m2+1),不妨設m>0.
切線方程為:y-(-m2+1)=-2m(x-m),則|OA|=$\frac{m}{2}+\frac{1}{2m}$,|OB|=m2+1,
則△OAB的面積s=$\frac{1}{2}$×|OA|×|OB|=$\frac{1}{4}$(${m}^{3}+2m+\frac{1}{m}$)
設f(m)=${m}^{3}+2m+\frac{1}{m}$,(m>0),則f′(m)=3m2+2-$\frac{1}{{m}^{2}}$=$\frac{3{m}^{4}+2{m}^{2}-1}{{m}^{2}}$
令f′(m)=0,得m=$\frac{\sqrt{3}}{3}$,f($\frac{\sqrt{3}}{3}$)=$\frac{16}{9}\sqrt{3}$,為△OAB的面積的最小值

解答 解:設切點為P((m,-m2+1),因為函數(shù)y=-x2+l的圖象關于y軸對稱,不妨設m>0
∵y′=-2x,∴切線的斜率k=-2m
切線方程為:y-(-m2+1)=-2m(x-m),即2mx+y-m2-1=0
令x=0,則y=m2+1,令y=0,則x=$\frac{{m}^{2}+1}{2m}$
故|OA|=$\frac{m}{2}+\frac{1}{2m}$,|OB|=m2+1,
則△OAB的面積s=$\frac{1}{2}$×|OA|×|OB|=$\frac{1}{4}$(${m}^{3}+2m+\frac{1}{m}$)
設f(m)=${m}^{3}+2m+\frac{1}{m}$,(m>0),則f′(m)=3m2+2-$\frac{1}{{m}^{2}}$=$\frac{3{m}^{4}+2{m}^{2}-1}{{m}^{2}}$
令f′(m)=0,得m=$\frac{\sqrt{3}}{3}$
f($\frac{\sqrt{3}}{3}$)=$\frac{16}{9}\sqrt{3}$,則△OAB的面積的最小值為$\frac{1}{4}×\frac{16}{9}\sqrt{3}=\frac{4}{9}\sqrt{3}$.
故答案為:$\frac{{4\sqrt{3}}}{9}$

點評 本題考查了導數(shù)的幾何意義,利用導數(shù)求最值,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.下列敘述中正確的是( 。
A.若a,b,c∈R,則“ax2+bx+c≥0”的充分條件是“b2-4ac≤0”
B.若a,b,c∈R,則“ab2>cb2”的充要條件是“a>c”
C.l是一條直線,α,β是兩個不同的平面,若l⊥α,l⊥β,則α∥β
D.命題“對任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.5支籃球隊進行單循環(huán)比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是$\frac{1}{2}$.單循環(huán)比賽結束,以獲勝的場次數(shù)作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.有下列四個命題:p1:恰有四支球隊并列第一名為不可能事件;p2:有可能出現(xiàn)恰有兩支球隊并列第一名;p3:每支球隊都既有勝又有敗的概率為$\frac{17}{32}$;p4:五支球隊成績并列第一名的概率為$\frac{3}{32}$.其中真命題是( 。
A.p1,p2,p3B.p1,p2,p4C.p1,p3,p4D.p2,p3,p4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知拋物線C:x2=4y的焦點為F,直線l:y=kx+a(a>0)與拋物線C交于A,B兩點.
(Ⅰ)若直線l過焦點F,且與圓x2+(y-1)2=1交于D,E(其中A,D在y軸同側),求證:|AD|•|BE|是定值;
(Ⅱ)設拋物線C在A和B點的切線交于點P,試問:y軸上是否存在點Q,使得APBQ為菱形?若存在,請說明理由并求此時直線l的斜率和點Q的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖,由函數(shù)f(x)=x2-x的圖象與x軸、直線x=2圍成的陰影部分的面積為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.命題“若a-b=0,則(a-b)(a+b)=0”的逆否命題為(a-b)(a+b)≠0則a-b≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.同時拋擲兩枚質地均勻的骰子一次,在兩枚骰子點數(shù)不同的條件下,兩枚骰子至少有一枚出現(xiàn)6點的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=ex(x2-x+1)-m,若?a,b,c∈R,且a<b<c,使得f(a)=f(b)=f(c)=0.則實數(shù)m的取值范圍是$({1,\frac{3}{e}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若兩曲線y=x2-1與y=alnx-1存在公切線,則正實數(shù)a的取值范圍是(0,2e).

查看答案和解析>>

同步練習冊答案