兩直線l1:ax+2y+6=0,l2:x+(a-1)y+(a2-1)=0,若l1⊥l2,則a=
 
考點(diǎn):直線的一般式方程與直線的垂直關(guān)系
專題:直線與圓
分析:利用直線相互垂直與斜率的關(guān)系即可得出.
解答: 解:當(dāng)a=0或a=1時(shí),不滿足條件,舍去.
兩條直線的斜率分別為:k1=-
a
2
k2=
1
1-a

∴l(xiāng)1⊥l2,∴k1k2=-
a
2(1-a)
=-1,解得a=
2
3

故答案為:
2
3
點(diǎn)評(píng):本題考查了直線相互垂直的充要條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
|x|
x
+x的圖象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)a,b滿足2a+b=9.
(i)若|9-b|+|a|<3,求x的取值范圍;
(ii)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2x-4sin3xcosx(x∈R)的最小正周期為( 。
A、
π
2
B、π4
C、π8
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+mx+4,當(dāng)x∈R時(shí),恒有y>0,則m的取值范圍是( 。
A、(0,2)
B、(-2,2)
C、(-4.4)
D、(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)為R+→R+的函數(shù),對(duì)任意正實(shí)數(shù)x,f(5x)=5f(x),當(dāng)x∈[1,5]時(shí)f(x)=2-|x-3|,則使得f(x)=f(665)的最小實(shí)數(shù)x為(  )
A、45B、65C、85D、165

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A(-1,0),B(0,
3
),C(3,0),動(dòng)點(diǎn)D滿足
|CD|
=1
,則|
OA
+
OB
+
OD
|
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一塊弓形薄鐵片EAF,點(diǎn)M為
EF
的中點(diǎn),其所在圓O的半徑為4dm(圓心O在弓形EMF內(nèi)).∠EOF=
3
,將弓形薄鐵片截成盡可能大的矩形鐵片ABCD(不計(jì)損耗).AD∥EF且A、D在
EF
上,設(shè)∠AOD=2θ.
(1)求矩形鐵片ABCD的面積與關(guān)于θ的函數(shù)解析式;
(2)當(dāng)裁出的矩形鐵片ABCD的面積最大時(shí),求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=3an+2n.
(1)求證:數(shù)列{an-2}是等比數(shù)列. 
(2)若bn=n×(an-2),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案