2.若$\overrightarrow{AB}$$•\overrightarrow{AC}$=-1,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,則($\frac{1}{2}$$\overrightarrow{AB}$-$\overrightarrow{AC}$)•($\overrightarrow{AB}$+$\overrightarrow{AC}$)的值為( 。
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{5}{4}$D.$\frac{3}{2}$

分析 根據(jù)平面向量數(shù)量積運(yùn)算法則,計(jì)算即可.

解答 解:$\overrightarrow{AB}$$•\overrightarrow{AC}$=-1,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,
∴($\frac{1}{2}$$\overrightarrow{AB}$-$\overrightarrow{AC}$)•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=$\frac{1}{2}$${\overrightarrow{AB}}^{2}$-$\frac{1}{2}$$\overrightarrow{AB}$•$\overrightarrow{AC}$-${\overrightarrow{AC}}^{2}$
=$\frac{1}{2}$×22-$\frac{1}{2}$×(-1)-12
=$\frac{3}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了平面向量數(shù)量積的運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.命題:“$?{x_0}>0,{2^{x_0}}>1$”的否定是?x>0,2x≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若復(fù)數(shù)z滿足$(1+i)z=|{\sqrt{3}+i}|$,則在復(fù)平面內(nèi),$\overline z$對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)a<0,若不等式sin2x+(a-1)cosx+a2-1≥0對(duì)于任意的x∈R恒成立,則a的取值范圍是a≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖(1)所示,已知四邊形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,且點(diǎn)A為線段SD的中點(diǎn),AD=2DC=1,AB=SD,現(xiàn)將△SAB沿AB進(jìn)行翻折,使得二面角S-AB-C的大小為90°,得到的圖形如圖(2)所示,連接SC,點(diǎn)E、F分別在線段SB、SC上.
(Ⅰ)證明:BD⊥AF;
(Ⅱ)若三棱錐B-AEC的體積是四棱錐S-ABCD體積的$\frac{2}{5}$,求點(diǎn)E到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若公比為2的等比數(shù)列{an}滿足a7=127a${\;}_{4}^{2}$,則{an}的前7項(xiàng)和為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=|x+2|+|x-m|.
(1)當(dāng)m=6時(shí),解不等式f(x)≥12;
(2)已知a>0,b>0,且$\frac{1}{a}$+$\frac{1}$=$\sqrt{ab}$,若對(duì)于?a,b∈R*,?x0使f(x0)≤ab成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在平面直角坐標(biāo)系中,點(diǎn)A(0,2)和點(diǎn)B(3,5)到直線l的距離都是3,則符合條件的直線l共有( 。l.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=x3+x2+5ax-1存在極值點(diǎn)的充要條件是( 。
A.a$≤\frac{1}{15}$B.a<$\frac{1}{15}$C.a$≥\frac{1}{15}$D.a>$\frac{1}{15}$

查看答案和解析>>

同步練習(xí)冊(cè)答案