1.已知向量$\overrightarrow{a}$,$\overrightarrow$,且|$\overrightarrow{a}$|=2$\sqrt{3}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,$\overrightarrow{a}$⊥(3$\overrightarrow{a}$-$\overrightarrow$),則|$\overrightarrow$|等于( 。
A.6B.6$\sqrt{3}$C.12D.12$\sqrt{3}$

分析 利用兩個向量垂直的性質(zhì),兩個向量的數(shù)量積的定義,求得|$\overrightarrow$|.

解答 解:∵|$\overrightarrow{a}$|=2$\sqrt{3}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,$\overrightarrow{a}$⊥(3$\overrightarrow{a}$-$\overrightarrow$),
∴$\overrightarrow{a}$•(3$\overrightarrow{a}$-$\overrightarrow$)=3${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow$=3•12-2$\sqrt{3}$•|$\overrightarrow$|•cos$\frac{π}{6}$=0,∴|$\overrightarrow$|=12,
故選:C.

點評 本題主要考查兩個向量垂直的性質(zhì),兩個向量的數(shù)量積的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.等軸雙曲線C的中心在原點,焦點在x軸上,C與拋物線y2=16x的準線交于A,B兩點,若|AB|=4,則C的實軸長為( 。
A.4B.2C.4$\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點分別為F1,F(xiàn)2,且經(jīng)過點$P({0,\sqrt{5}})$,離心率為$\frac{2}{3}$,A為直線x=4上的動點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點B在橢圓C上,滿足OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(1,-$\sqrt{3}$),$\overrightarrow$=(x,3$\sqrt{3}$),若(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知動圓M在圓F1:(x+1)2+y2=$\frac{1}{4}$外部且與圓F1相切,同時還在圓F2:(x-1)2+y2=$\frac{49}{4}$內(nèi)部與圓F2相切.
(1)求動圓圓心M的軌跡方程;
(2)記(1)中求出的軌跡為C,C與x軸的兩個交點分別為A1、A2,P是C上異于A1、A2的動點,又直線l:x=$\sqrt{6}$與x軸交于點D,直線A1P、A2P分別交直線l于E、F兩點,求證:DE•DF為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2$\sqrt{3}$,sinB=2sinA.
(1)若C=$\frac{π}{3}$,求a,b的值;
(2)若cosC=$\frac{1}{4}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等差數(shù)列{an}的前n項和為Sn,且S5=-15,a2+a5=-2,則公差d等于( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點A、B在半徑為$\sqrt{3}$的球O表面上運動,且AB=2,過AB作相互垂直的平面α、β,若平面α、β截球O所得的截面分別為圓M、N,則( 。
A.MN長度的最小值是2B.MN的長度是定值$\sqrt{2}$
C.圓M面積的最小值是2πD.圓M、N的面積和是定值8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-2|+|2x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若關(guān)于x的方程$\frac{1}{f(x)-4}$=a的解集為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案