10.已知點A、B在半徑為$\sqrt{3}$的球O表面上運動,且AB=2,過AB作相互垂直的平面α、β,若平面α、β截球O所得的截面分別為圓M、N,則( 。
A.MN長度的最小值是2B.MN的長度是定值$\sqrt{2}$
C.圓M面積的最小值是2πD.圓M、N的面積和是定值8π

分析 作出圖象,求出CD,即可得出結(jié)論.

解答 解:如圖所示,過AB作相互垂直的平面α、β,則BD⊥BC,
BC2+BD2+4=12,∴CD=2$\sqrt{2}$,
∵M,N分別是AC,AD的中點,
∴MN的長度是定值$\sqrt{2}$,
故選B.

點評 本題考查球的內(nèi)接幾何體,考查面面垂直,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬P-ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,E為PC中點,點F在PB上,且PB⊥平面DEF,連接BD,BE.
(Ⅰ)證明:DE⊥平面PBC;
(Ⅱ)試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(Ⅲ)已知AD=2,$CD=\sqrt{2}$,求二面角F-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$,$\overrightarrow$,且|$\overrightarrow{a}$|=2$\sqrt{3}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,$\overrightarrow{a}$⊥(3$\overrightarrow{a}$-$\overrightarrow$),則|$\overrightarrow$|等于( 。
A.6B.6$\sqrt{3}$C.12D.12$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{ax-1},x≥0}\\{-{x}^{2}-4x,x<0}\end{array}\right.$,若f(f(-2))=3,則a=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知方程$\frac{{x}^{2}}{2+m}$-$\frac{{y}^{2}}{m+1}$=1表示橢圓,則實數(shù)m的取值范圍是( 。
A.(-∞,-1)B.(-2,+∞)C.(-∞,-$\frac{3}{2}$)∪(-1,+∞)D.(-2,-$\frac{3}{2}$)∪(-$\frac{3}{2}$,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.空氣質(zhì)量問題,全民關(guān)注,有需求就有研究,某科研團隊根據(jù)工地常用高壓水槍除塵原理,制造了霧霾神器----霧炮,雖然霧炮不能徹底解決問題,但是能在一定程度上起到防霾、降塵的作用,經(jīng)過100次測試得到霧炮降塵率的頻數(shù)分布表:
 降塵率(%)分組[0,5)[5,10)[10,15)[15,20)[20,25)[25,30)[30,35]
 頻數(shù) 1015  1025  2015  5
(1)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計霧炮降塵率的平均數(shù);
(3)若降塵率達到18%以上,則認定霧炮除塵有效,根據(jù)以上數(shù)據(jù)估計霧炮除塵有效的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線M的實軸長為2,且它的一條漸近線方程為y=2x,則雙曲線M的標準方程可能是( 。
A.x2-4y2=1B.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{64}$=1C.$\frac{{y}^{2}}{4}$-x2=1D.y2-4x2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等差數(shù)列{an}中,a1+3a8+a15=60,則2a${\;}_{{9}_{\;}}$-a10的值為( 。
A.6B.8C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知公差為2的等差數(shù)列{an}及公比為2的等比數(shù)列{bn}滿足a1+b1>0,a2+b2<0,設(shè)m=a4+b3,則實數(shù)m的取值范圍是(-∞,0).

查看答案和解析>>

同步練習(xí)冊答案