分析 由f(x)表達(dá)式作出函數(shù)f(x)的圖象,由圖象可求得符合條件的m的取值范圍,由圖可知0<x1<1<x2<2<x3<3,通過(guò)解方程可用m把x1,x2,x3分別表示出來(lái),即可求出得x1x2x3的取值范圍.
解答 解:作出函數(shù)f(x)的圖象如下圖所示:
由f(x)=$\left\{\begin{array}{l}{\sqrt{x}}\\{|x-2|}\end{array}\right.$
,解得A(1,1),B(4,2)
由圖象可得,當(dāng)直線y=m與f(x)圖象有三個(gè)交點(diǎn)時(shí)m的范圍為:0<m<1,
由圖可知0<x1<1<x2<2<x3<3,
則由$\sqrt{{x}_{1}}$=m得x1=m2,由|x2-2|=2-x2=m,
得x2=2-m,由|x3-2|=x3-2=m,
得x3=m+2,且2-m>0,m+2>0,
∴x1•x2•x3=m2•(2-m)•(2+m)=m2•(4-m2)=-(m2-2)2+4,
當(dāng)m=1時(shí),函數(shù)有最大值,即為3,
∴0<x1•x2•x3≤3.
故答案為:(0,3)
點(diǎn)評(píng) 本題考查函數(shù)與方程的綜合運(yùn)用,以及數(shù)形結(jié)合思想,綜合運(yùn)用知識(shí)分析解決新問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com