2.在x(1-x)5的展開式中,含x3的項的系數(shù)為10.

分析 利用(1-x)5展開式的二次項與x的一次項相乘,即可得到x(1-x)5的展開式中含x3項的系數(shù).

解答 解:∵(1-x)5展開式的通項公式為:
Tr+1=C5r•xr•(-1)r,、
在x(1-x)5的展開式中,含x3的項的系數(shù)即為(1-x)5的展開式中,含x2的項的系數(shù),
則r=2,
則含x3的項的系數(shù)為=C52•(-1)2=10,
故答案為:10.

點評 本題考查了二項式定理的應用問題,也考查了利用展開式的通項公式求指定項的系數(shù),是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{lnx}{x}$-1.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)設m>0,求函數(shù)f(x)在區(qū)間[m,2m]上的最大值;
(3)證明:對?n∈N*,不等式ln(1+n)e<n+1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=sin2(3x-$\frac{π}{6}$),求函數(shù)y=f(x)在x=$\frac{π}{6}$處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在長方體ABCD-A1B1C1D1中,AB=BC=$\sqrt{2}$AA1,Q是棱CC1上的動點,則當BQ+QD1的長度取得最小值時,直線B1Q與直線AD所成角的正切值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.$\int_3^9{\frac{1}{x}}dx$等于( 。
A.ln3B.2ln3C.-ln3D.3ln3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)=2|x-a|是定義在R上的偶函數(shù),則下列不等關系正確的是(  )
A.f(log23)<f(log0.55)<f(a)B.f(log0.55)<f(log23)<f(a)
C.f(a)<f(log23)<f(log0.55)D.f(a)<f(log0.55)<f(log23)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=-$\frac{{3{x^2}}}{2}$+lnx,g(x)=$\frac{1}{2}{x^2}$-2ax+1+lnx.
(Ⅰ)求函數(shù)f(x)的極值.
(Ⅱ)若x0是函數(shù)g(x)的極大值點,證明:x0lnx0-ax02>-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若直線l:x+2y=0與圓C:(x-a)2+(y-b)2=10相切,且圓心C在直線l的上方,則ab的最大值為$\frac{25}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(2m,1)$\overrightarrow$=(4-n,2),m>0,n>0,若$\overrightarrow{a}$∥$\overrightarrow$,則$\frac{1}{m}+\frac{8}{n}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案