Processing math: 65%
18.已知圓C:(x-3)2+(y-4)2=1和兩點(diǎn)A(-m,0),B(m,0)(m>0).若圓上存在點(diǎn)P使得PAPB=0,則m的取值范圍是(  )
A.(-∞,4]B.(6,+∞)C.(4,6)D.[4,6]

分析 根據(jù)題意,得出圓C的圓心C與半徑r,設(shè)點(diǎn)P(a,b)在圓C上,表示出AP=(a+m,b),BP=(a-m,b),利用PAPB=0,求出m2,根據(jù)|OP|表示的幾何意義,得出m的取值范圍.

解答 解:∵圓C:(x-3)2+(y-4)2=1,
∴圓心C(3,4),半徑r=1;
設(shè)點(diǎn)P(a,b)在圓C上,則AP=(a+m,b),BP=(a-m,b);
PAPB=0
∴(a+m)(a-m)+b2=0;
即m2=a2+b2;
∴|OP|=a2+2
∴|OP|的最大值是|OC|+r=5+1=6,最小值是|OC|-r=5-1=4;
∴m的取值范圍是[4,6].
故選D.

點(diǎn)評(píng) 本題考查了平面向量的應(yīng)用問題,也考查了直線與圓的應(yīng)用問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若cosC=223,bcosA+acosB=2,則△ABC的外接圓的面積為( �。�
A.B.C.D.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)F1,F(xiàn)2為雙曲線C:x2a2-y22=1的左,右焦點(diǎn),P,Q為雙曲線C右支上的兩點(diǎn),若PF2=2F2Q,且F1QPQ=0,則該雙曲線的離心率是( �。�
A.3B.2C.173D.132

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知P,Q是圓心在坐標(biāo)原點(diǎn)O的單位圓上的兩點(diǎn),且分別位于第一象限和第四象限,點(diǎn)P的橫坐標(biāo)為45,點(diǎn)Q的橫坐標(biāo)為513,則cos∠POQ=-1665

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|kx-1|.
(Ⅰ)若f(x)≤3的解集為[-2,1],求實(shí)數(shù)k的值;
(Ⅱ)當(dāng)k=1時(shí),若對(duì)任意x∈R,不等式f(x+2)-f(2x+1)≤3-2m都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.矩形OABC的四個(gè)頂點(diǎn)坐標(biāo)依次為O({0,0}),A({\frac{π}{2},0}),B({\frac{π}{2},1}),C({0,1}),線段OA,OC及y=cosx({0<x≤\frac{π}{2}})的圖象圍成的區(qū)域?yàn)棣福艟匦蜲ABC內(nèi)任投一點(diǎn)M,則點(diǎn)M落在區(qū)域內(nèi)Ω的概率為\frac{2}{π}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側(cè)面ABB1A1,且AA1=AB=2.
(1)求證:AB⊥BC;
(2)若直線AC與平面A1BC所成的角為\frac{π}{6},請(qǐng)問在線段A1C上是否存在點(diǎn)E,使得二面角A-BE-C的大小為\frac{2π}{3},請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)的左焦點(diǎn)為F1(-\sqrt{6},0),e=\frac{\sqrt{2}}{2}
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,設(shè)R(x0,y0)是橢圓C上一動(dòng)點(diǎn),由原點(diǎn)O向圓(x-x02+(y-y02=4引兩條切線,分別交橢圓于點(diǎn)P,Q,若直線OP,OQ的斜率存在,并記為k1,k2,求證:k1•k2為定值;
(Ⅲ)在(Ⅱ)的條件下,試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知F1,F(xiàn)2分別為雙曲線\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0,a≠b)的左右焦點(diǎn),P為雙曲線右支上異于頂點(diǎn)的任一點(diǎn),O為坐標(biāo)原點(diǎn),則下列說法正確的是(  )
A.△PF1F2的內(nèi)切圓圓心在直線x=\frac{a}{2}B.△PF1F2的內(nèi)切圓圓心在直線x=b上
C.△PF1F2的內(nèi)切圓圓心在直線OP上D.△PF1F2的內(nèi)切圓經(jīng)過點(diǎn)(a,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案