9.設(shè)F1,F(xiàn)2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左,右焦點(diǎn),P,Q為雙曲線C右支上的兩點(diǎn),若$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{{F}_{2}Q}$,且$\overrightarrow{{F}_{1}Q}$•$\overrightarrow{PQ}$=0,則該雙曲線的離心率是( 。
A.$\sqrt{3}$B.2C.$\frac{\sqrt{17}}{3}$D.$\frac{\sqrt{13}}{2}$

分析 設(shè)|F2Q|=m,根據(jù)雙曲線的定義分別求出|PF1|=2m+2a,|QF1|=m+2a,根據(jù)直角三角形的性質(zhì)建立方程關(guān)系求出m=$\frac{2}{3}$a,然后再次利用直角三角形的關(guān)系建立a,c的方程關(guān)系進(jìn)行求解即可.

解答 解:∵經(jīng)過右焦點(diǎn)F2的直線與雙曲線C的右支交于P,Q兩點(diǎn),且|PF2|=2|F2Q|,
∴設(shè)|F2Q|=m,則|PF2|=2|F2Q|=2m,
|PF1|=|PF2|+2a=2m+2a,
|QF1|=|QF2|+2a=m+2a,
∵PQ⊥F1Q,
∴|PF1|2=|PQ|2+|QF1|2
即(2m+2a)2=(3m)2+(m+2a)2,
整理得4m2+8ma+4a2=9m2+m2+8ma+4a2,
即4am=6m2,
則m=$\frac{2}{3}$a,
則|QF1|=$\frac{2}{3}$a+2a=$\frac{8a}{3}$,|F2Q|=$\frac{2}{3}$a,
由|F1F2|2=|F1Q|2+|QF2|2
即4c2=($\frac{8a}{3}$)2+($\frac{2}{3}$a)2=$\frac{68{a}^{2}}{9}$,
則e=$\frac{c}{a}$=$\frac{\sqrt{17}}{3}$,
故選:C.

點(diǎn)評(píng) 本題主要考查雙曲線離心率的計(jì)算,根據(jù)直角三角形的定義結(jié)合雙曲線的定義建立方程公式是解決本題的關(guān)鍵.綜合性較強(qiáng),考查學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知由實(shí)數(shù)組成的等比數(shù)列{an}的前項(xiàng)和為Sn,且滿足8a4=a7,S7=254.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N*,bn=$\frac{2n+1}{(log{{\;}_{2}a}_{n})^{2}•(log{{\;}_{2}a}_{n+1})^{2}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)={e^x}-\frac{1}{2}a{x^2}$(x>0,e為自然對(duì)數(shù)的底數(shù)),f'(x)是f(x)的導(dǎo)函數(shù).
(Ⅰ)當(dāng)a=2時(shí),求證f(x)>1;
(Ⅱ)是否存在正整數(shù)a,使得f'(x)≥x2lnx對(duì)一切x>0恒成立?若存在,求出a的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn.,且${S_n}={n^2}-2n$.
(Ⅰ)求{an}通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=n•{2^{{a_n}+1}}$,求數(shù)列{bn}前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,$\overrightarrow{a}$•$\overrightarrow$=-1,且$\overrightarrow{a}$-$\overrightarrow{c}$與$\overrightarrow$-$\overrightarrow{c}$的夾角為$\frac{π}{4}$,則|$\overrightarrow{c}$|的最大值為(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)i是虛數(shù)單位,復(fù)數(shù)i(1+ai)為純虛數(shù),則實(shí)數(shù)a為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若變量x,y滿足的約束條件是$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}\right.$,且z=2x+y的最小值為-6,則k=( 。
A.0B.-2C.2D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知圓C:(x-3)2+(y-4)2=1和兩點(diǎn)A(-m,0),B(m,0)(m>0).若圓上存在點(diǎn)P使得$\overrightarrow{PA}•\overrightarrow{PB}=0$,則m的取值范圍是(  )
A.(-∞,4]B.(6,+∞)C.(4,6)D.[4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知變量x,y滿足約束任務(wù)$\left\{\begin{array}{l}{x+y-5≤0}\\{x-2y+1≤0}\\{x-1≥0}\end{array}\right.$,則z=x+2y的最小值是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案