3.已知等差數(shù)列{an}的公差d不為0,且a7,a3,a1是等比數(shù)列{bn}從前到后的連續(xù)三項(xiàng).
(1)若a1=4,求等差數(shù)列{an}的前10項(xiàng)的和S10
(2)若等比數(shù)列{bn}的前100項(xiàng)的和T100=150,求b2+b4+b6+…+b100的值.

分析 (1)設(shè)公差為d,由a7,a3,a1是等比數(shù)列{bn}從前到后的連續(xù)三項(xiàng).可得${a_1}•{a_7}=a_3^2$,再利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)a7=8d,a3=4d,可得公比$q=\frac{1}{2}$,T100=b1+b3+…+b99+b2+b4+…+b100,又b2+b4+…+b100=q(b1+b3+…+b99),即可得出.

解答 解:(1)設(shè)公差為d,∵a7,a3,a1是等比數(shù)列{bn}從前到后的連續(xù)三項(xiàng).
∴${a_1}•{a_7}=a_3^2$,$a_1^2+6{a_1}d=a_1^2+4{a_1}d+4{d^2}$,
∴a1=2d,又a1=4,∴d=2,
an=2n+2,${S_{10}}=\frac{{({a_1}+{a_{10}})×10}}{2}=130$.
(2)a7=8d,a3=4d,
∴公比$q=\frac{1}{2}$,
T100=b1+b3+…+b99+b2+b4+…+b100
又b2+b4+…+b100=q(b1+b3+…+b99),
∴${b_2}+{b_4}+…+{b_{100}}+\frac{1}{q}({b_2}+{b_4}+…+{b_{100}})=150$,
∴b2+b4+…+b100=50.

點(diǎn)評(píng) 本題考查了分組求和方法、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n-5an+23,n∈N*,則數(shù)列{an}的通項(xiàng)公式an=( 。
A.$3×{(\frac{5}{6})^{n-1}}-1$B.$3×{(\frac{5}{6})^n}-1$C.$3×{(\frac{5}{6})^{n-1}}+1$D.$3×{(\frac{5}{6})^n}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{n}{a_n}$,Sn是數(shù)列{bn}的前n項(xiàng)和,不等式${S_n}+\frac{n}{{{2^{n+1}}}}>{(-1)^n}•a$對(duì)任意正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在等比數(shù)列{an}中,已知${a_2}=\frac{1}{2}\;,\;\;{a_5}=4$,則此數(shù)列的公式比為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若等腰△ABC的周長(zhǎng)為$4\sqrt{2}$,則△ABC腰AB上的中線CD的長(zhǎng)的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若復(fù)數(shù)z滿足(-3+4i)$\overline{z}$=25i,其中i為虛數(shù)單位,則z=( 。
A.4-3iB.4+3iC.-5+3iD.3+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=sin$\frac{π}{6}$xcos$\frac{π}{6}$x-$\sqrt{3}$sin2$\frac{π}{6}$x在區(qū)間[-1,a]上至少取得2個(gè)最大值,則正整數(shù)a的最小值是( 。
A.8B.9C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某農(nóng)戶計(jì)劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設(shè)種植黃瓜和韭菜的產(chǎn)量,成本和售價(jià)如下表:
 年產(chǎn)量/畝年種植成本/畝 每噸售價(jià) 
 黃瓜 4噸 1.2萬元 0.55萬元
 韭菜6噸  0.9萬元 0.3萬元
分別用x,y表示黃瓜和韭菜的種植面積(單位:畝)
(Ⅰ)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別種植黃瓜和韭菜各對(duì)少畝能夠使一年的種植總利潤(rùn)(總利潤(rùn)=總銷售收入-總種植成本)最大?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知命題p:方程x2-2x+m=0有實(shí)根,命題q:m∈[-1,5].
(1)當(dāng)命題p為真命題時(shí),求實(shí)數(shù)m的取值范圍;
(2)若p∧q為假命題,p∨q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案