14.已知定義在R上的函數(shù)f(x)滿足f(1)=1,且對于任意的xf′(x)$<\frac{1}{2}$恒成立,則不等式f(lg2x)<$\frac{l{g}^{2}x}{2}$+$\frac{1}{2}$的解集為$(0,\frac{1}{10})∪(10,+∞)$.

分析 設(shè)g(x)=f(x)-$\frac{1}{2}$x,由f′(x)<$\frac{1}{2}$,得到g′(x)小于0,得到g(x)為減函數(shù),將所求不等式變形后,利用g(x)為減函數(shù)求出x的范圍,即為所求不等式的解集.

解答 解:設(shè)g(x)=f(x)-$\frac{1}{2}$x,由f′(x)<$\frac{1}{2}$,
得到g′(x)=f′(x)-$\frac{1}{2}$<0,
∴g(x)為減函數(shù),
又f(1)=1,
∵f(lg2x)<$\frac{l{g}^{2}x}{2}$+$\frac{1}{2}$,
∴g(lg2x)=f(lg2x)-$\frac{1}{2}$lg2x<$\frac{l{g}^{2}x}{2}$+$\frac{1}{2}$-$\frac{1}{2}$lg2x=$\frac{1}{2}$=f(1)-$\frac{1}{2}$=g(1)=g(lg210),
∴l(xiāng)g2x>lg210,
∴(lgx+lg10)(lgx-lg10)>0,
∴l(xiāng)gx<-lg10,或lgx>lg10,
解得0<x<$\frac{1}{10}$,或x>10,
故答案為:$(0,\frac{1}{10})∪(10,+∞)$.

點(diǎn)評 本題考查了其他不等式的解法,涉及的知識有:利用導(dǎo)數(shù)研究函數(shù)的增減性,對數(shù)函數(shù)的單調(diào)性及特殊點(diǎn),以及對數(shù)的運(yùn)算性質(zhì),是一道綜合性較強(qiáng)的試題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,PA⊥平面ABC,PA=$\sqrt{2}$,AB=1,BC=$\sqrt{3}$,AC=2.
(1)求證:BC⊥平面PAB;
(2)求二面角B-PA-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)x>0,f(x)=eax-x
(I)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)a=1時,證明:f(x)>$\frac{{x}^{2}}{2}$+1;
(Ⅲ)若ex=1+x+$\frac{1}{2}$x2ey,證明:0<y<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,曲線C的方程為x2-2x+y2=0,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為θ=$\frac{π}{4}$(ρ∈R).
(Ⅰ)寫出C的極坐標(biāo)方程,并求l與C的交點(diǎn)M,N的極坐標(biāo);
(Ⅱ)設(shè)P是橢圓$\frac{{x}^{2}}{3}$+y2=1上的動點(diǎn),求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,圓O是△ABC的外接圓,AD垂直平分BC并交圓O于D點(diǎn),直線CE與圓O相切于點(diǎn)C,與AB的延長線交于點(diǎn)E,BC=BE.
(1)求∠DCE的大小;
(2)若AE=1,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,且AC=BD,平面PA⊥平面ABCD,E為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)在△PAD中,AP=2,AD=2$\sqrt{3}$,PD=4,三棱錐E-ACD的體積是$\sqrt{3}$,求二面角D-AE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓的兩焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),P為橢圓上一點(diǎn),且2|F1F2|=|PF1|+|PF2|.
(1)求此橢圓方程;
(2)若點(diǎn)P 是橢圓上的點(diǎn)且∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若曲線$\left\{\begin{array}{l}{x=2-tsin30°}\\{y=-1+tsin30°}\end{array}\right.$(t為參數(shù)) 與曲線x2+y2=8相交于B,C兩點(diǎn),則|BC|的值為( 。
A.$2\sqrt{7}$B.$\sqrt{60}$C.$7\sqrt{2}$D.$\sqrt{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.現(xiàn)用數(shù)學(xué)歸納法證明“平面內(nèi)n條直線,最多將平面分成$\frac{{{n^2}+n+2}}{2}$個區(qū)域”,過程中由n=k到 n=k+1時,應(yīng)證明區(qū)域個數(shù)增加了( 。
A.k+1B.2k+1C.k2+1D.(k+1)2

查看答案和解析>>

同步練習(xí)冊答案