已知y=f(x)是R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=x2+4x-1,求y=f(x)的解析式,畫出y=f(x)的圖象,并指出y=f(x)的單調(diào)區(qū)間.
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)解析式的求解及常用方法,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先設(shè)x>0,則可得-x<0,然后利用f(-x)=-f(x)及x<0時(shí)函數(shù)的解析式,可求x>0時(shí)的函數(shù)f(x)的解析式,再由f(0)=0,即可求解;先畫出y=f(x)(x<0)的圖象,利用奇函數(shù)的對(duì)稱性可得到相應(yīng)y=f(x)(x<0)的圖象,由圖可求單調(diào)區(qū)間
解答: 解:設(shè)x>0,則可得-x<0,
∴f(-x)=(-x)2-4x-1=x2-4x-1.
又∵f(x)為奇函數(shù),
∴f(-x)=-f(x).
∴f(x)=-x2+4x+1.
又f(0)=0,
∴f(x)=
x2+4x-1,x<0
0,x=0
-x2+4x+1,x>0
,
y=f(x)的圖象如下圖所示:

由圖可知,其增區(qū)間為[-2,2]
減區(qū)間為(-∞,-2],[2,+∞).
點(diǎn)評(píng):本題主要考查了奇函數(shù)圖象的對(duì)稱性的應(yīng)用及奇函數(shù)性質(zhì)的簡單應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

國家邊防戰(zhàn)士飼養(yǎng)優(yōu)種信鴿擔(dān)負(fù)書信傳輸解決邊防信息傳輸不方便問題,在雅安震災(zāi)救援信息傳輸任務(wù)中,已知飛回的6只信鴿中,有一只被禽流感病毒感染,需要通過化驗(yàn)鴿血來確定患鴿,以免傳染造成更大損失,血液化驗(yàn)結(jié)果呈陽性即為患鴿,呈陰性的即為健康鴿子,下面是兩種化驗(yàn)方案:
方案甲:逐個(gè)化驗(yàn),直到能確定患鴿為止;
方案乙:將鴿子分為兩組,每組3只,并將它們的血液混合在一起化驗(yàn),若結(jié)果是陽性,則表明患鴿在這3只之中,然后再逐個(gè)化驗(yàn),直到確定患鴿為止;若結(jié)果呈陰性,則在另外一組信鴿中逐個(gè)進(jìn)行化驗(yàn).
(1)求依方案乙所需化驗(yàn)恰好為2次的概率;
(2)首次化驗(yàn)化驗(yàn)費(fèi)10元,第二次化驗(yàn)化驗(yàn)費(fèi)8元,第三次及其以后每次都是6元,列出甲方案所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用甲方案平均需要化驗(yàn)費(fèi)多少?
(3)試比較兩種方案,估計(jì)哪種方案有利于盡快查找到患鴿.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a∈Z)為偶函數(shù),對(duì)于任意x∈R,f(x)≤1恒成立,且f(1)=0,則f(x)的表達(dá)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程|log2(x+4)|-3x=0的實(shí)根的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一項(xiàng)數(shù)學(xué)活動(dòng)中,某高校數(shù)學(xué)系100名教職工負(fù)責(zé)開車和數(shù)據(jù)管理兩項(xiàng)工作.其中會(huì)開車的有67人,會(huì)計(jì)算機(jī)數(shù)據(jù)處理的有45人,既會(huì)開車又會(huì)計(jì)算機(jī)數(shù)據(jù)處理的有33人,問:既不會(huì)開車,也不會(huì)計(jì)算機(jī)數(shù)據(jù)處理的有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的函數(shù),證明:f(x)+f(-x)是偶函數(shù),f(x)-f(-x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a2+b2=1,b2+c2=2,c2+a2=2,則ab+bc+ca的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-4x-8y+16=0,
(1)過點(diǎn)A(-4,2)的直線l被圓C截得弦長為2
2
,求l的方程;
(2)已知A(-4,m),m>0,P為x軸上的點(diǎn),Q(x,y)為圓C上的點(diǎn),若|AP|+|PQ|的最小值為8,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P:
x-1
x
≤0;q:4x+2x-m≤0且P是q的充分條件,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案