設(shè)f(x)是定義在R上的函數(shù),證明:f(x)+f(-x)是偶函數(shù),f(x)-f(-x)是奇函數(shù).
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令F(x)=f(x)+f(-x),G(x)=f(x)-f(-x),其定義域?yàn)镽,利用函數(shù)的奇偶性的定義即可判斷出.
解答: 證明:令F(x)=f(x)+f(-x),G(x)=f(x)-f(-x),
其定義域?yàn)镽,
而F(-x)=f(-x)+f(x)=F(x),G(-x)=f(-x)-f(x)=-G(x);
∴函數(shù)F(x)是偶函數(shù),G(x)是奇函數(shù).
點(diǎn)評(píng):本題考查了函數(shù)奇偶性的判定方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

含有三個(gè)實(shí)數(shù)的集合可表示為{a,
b
a
,1},也可表示為{a2,a+b,0}.求a+a2+a3+…+a2011+a2012的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=ax2+bx+c的圖象過(guò)點(diǎn)(-2,20),(1,2),(3,0),則a=
 
,b=
 
,c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域:
(1)y=
x+2
+
1
x2-x-6

(2)y=
(x+1)0
|x|-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=x2+4x-1,求y=f(x)的解析式,畫出y=f(x)的圖象,并指出y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
2x+2-x
2
,求:
(1)函數(shù)的定義域、值域;
(2)判斷函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2+4a的最小值為1.
(1)求a的值;
(2)判斷f(x)的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(1-2
x
+x)6的展開(kāi)式中,x4的系數(shù)是( 。
A、435B、455
C、475D、495

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“一個(gè)三角形中不能有兩個(gè)直角”的過(guò)程歸納為以下三個(gè)步驟:
①∠A+∠B+∠C=90°+90°+∠C>180°,這與三角形內(nèi)角和為180°相矛盾,則∠A=∠B=90°不成立;
②所以一個(gè)三角形中不能有兩個(gè)直角;
③假設(shè)∠A,∠B,∠C中有兩個(gè)角是直角,不妨設(shè)∠A=∠B=90°.
正確順序的序號(hào)排列為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案