12.已知6只小白鼠有1只被病毒感染,需要通過對(duì)其化驗(yàn)病毒DNA來確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒DNA,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒DNA,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).
(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.
(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要化驗(yàn)費(fèi)多少元?

分析 (1)方案乙中所需化驗(yàn)次數(shù)恰好為2次的事件有兩種情況:第一種,先化驗(yàn)一組,結(jié)果不含病毒DNA,再?gòu)牧硪唤M任取一個(gè)樣品進(jìn)行化驗(yàn),可得恰含有病毒的概率為$\frac{{∁}_{5}^{2}}{{∁}_{6}^{3}}$×$\frac{1}{{∁}_{3}^{1}}$.第二種,先化驗(yàn)一組,結(jié)果含有病毒DNA,再?gòu)闹兄饌(gè)化驗(yàn),恰第一個(gè)樣品含有病毒的概率為$\frac{{∁}_{5}^{2}}{{∁}_{6}^{3}}$×$\frac{1}{{∁}_{3}^{1}}$.利用互斥事件的概率計(jì)算公式即可得出.
(2)設(shè)方案甲化驗(yàn)的次數(shù)為ξ,則ξ可能的取值為1,2,3,4,5,對(duì)應(yīng)的化驗(yàn)費(fèi)為η元,利用相互獨(dú)立事件的概率計(jì)算公式可得:P(ξ=1)=P(η=10),P(ξ=2)=P(η=18),P(ξ=3)=P(η=24),P(ξ=4)=P(η=30),P(ξ=5)=P(η=36).

解答 解:(1)方案乙中所需化驗(yàn)次數(shù)恰好為2次的事件有兩種情況:
第一種,先化驗(yàn)一組,結(jié)果不含病毒DNA,再?gòu)牧硪唤M任取一個(gè)樣品進(jìn)行化驗(yàn),
則恰含有病毒的概率為$\frac{{∁}_{5}^{2}}{{∁}_{6}^{3}}$×$\frac{1}{{∁}_{3}^{1}}$=$\frac{1}{6}$.
第二種,先化驗(yàn)一組,結(jié)果含有病毒DNA,再?gòu)闹兄饌(gè)化驗(yàn),
恰第一個(gè)樣品含有病毒的概率為$\frac{{∁}_{5}^{2}}{{∁}_{6}^{3}}$×$\frac{1}{{∁}_{3}^{1}}$=$\frac{1}{6}$.
∴依據(jù)方案乙所需化驗(yàn)恰好為2次的概率為$\frac{1}{6}+\frac{1}{6}$=$\frac{1}{3}$.
(2)設(shè)方案甲化驗(yàn)的次數(shù)為ξ,則ξ可能的取值為1,2,3,4,5,對(duì)應(yīng)的化驗(yàn)費(fèi)為η元,
P(ξ=1)=P(η=10)=$\frac{1}{6}$,
P(ξ=2)=P(η=18)=$\frac{5}{6}$×$\frac{1}{5}$=$\frac{1}{6}$,
P(ξ=3)=P(η=24)=$\frac{5}{6}×$$\frac{4}{5}$×$\frac{1}{4}$=$\frac{1}{6}$,
P(ξ=4)=P(η=30)=$\frac{5}{6}×\frac{4}{5}×\frac{3}{4}×\frac{1}{3}$=$\frac{1}{6}$,
P(ξ=5)=P(η=36)=$\frac{5}{6}×\frac{4}{5}×\frac{3}{4}×\frac{2}{3}$=$\frac{1}{3}$,
∴方案甲所需化驗(yàn)費(fèi)用η的分布列為:

η1018243036
P$\frac{1}{6}$$\frac{1}{6}$$\frac{1}{6}$$\frac{1}{6}$$\frac{1}{3}$
用方案甲平均需要化驗(yàn)費(fèi)E(η)=$10×\frac{1}{6}$+$18×\frac{1}{6}$+24×$\frac{1}{6}$+30×$\frac{1}{6}$+36×$\frac{1}{3}$=$\frac{77}{3}$(元).

點(diǎn)評(píng) 本題考查了相互獨(dú)立與互斥事件的概率計(jì)算公式、隨機(jī)變量的分布列與數(shù)學(xué)期望計(jì)算公式,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知雙曲線C經(jīng)過點(diǎn)(2,3),它的漸近線方程為y=±$\sqrt{3}$x,橢圓C1與雙曲線C有相同的焦點(diǎn),橢圓C1的短軸長(zhǎng)與雙曲線C的實(shí)軸長(zhǎng)相等.
(1)求雙曲線C和橢圓C1的方程;
(2)經(jīng)過橢圓C1左焦點(diǎn)F的直線l與橢圓C1交于A、B兩點(diǎn),是否存在定點(diǎn)D,使得無論AB怎樣運(yùn)動(dòng),都有∠ADF=∠BDF;若存在,求出D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線C:y2=4x焦點(diǎn)為F,直線MN過焦點(diǎn)F且與拋物線C交于M,N兩點(diǎn),P為拋物線C準(zhǔn)線l上一點(diǎn)且PF⊥MN,連接PM交y軸于Q點(diǎn),過Q作QD⊥MF于點(diǎn)D,若|MD|=2|FN|,則|MF|=$\sqrt{3}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.觀察下列三角形數(shù)表:

假設(shè)第n行的第二個(gè)數(shù)為${a_n}({n≥2,n∈{N^*}})$,
(1)歸納出an+1與an的關(guān)系式,并求出an的通項(xiàng)公式;
(2)設(shè)anbn=1(n≥2),求證:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知2sinθ=1-cosθ,則tanθ=( 。
A.-$\frac{4}{3}$或0B.$\frac{4}{3}$或0C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題

已知,滿足約束條件恒成立,則實(shí)數(shù)的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,既是奇函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( 。
A.y=ex+e-xB.y=ln(|x|+1)C.$y=\frac{sinx}{|x|}$D.$y=x-\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是民航部門統(tǒng)計(jì)的2017年春運(yùn)期間十二個(gè)城市售出的往返機(jī)票的平均價(jià)格以及相比去年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖表,根據(jù)圖表,下面敘述不正確的是( 。
A.深圳的變化幅度最小,北京的平均價(jià)格最高
B.深圳和廈門的春運(yùn)期間往返機(jī)票價(jià)格同去年相比有所下降
C.平均價(jià)格從高到低居于前三位的城市為北京、深圳、廣州
D.平均價(jià)格變化量從高到低居于前三位的城市為天津、西安、廈門

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

已知點(diǎn)、是雙曲線,)的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在雙曲線的右支上,且滿足,則雙曲線的離心率的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案