分析 由定積分的幾何意義知:${∫}_{0}^{1}$$\sqrt{4-{x}^{2}}$dx是如圖所示的陰影部分曲邊梯形OABC的面積,其面積可分為扇形和三角形,分別求解即可,再根據(jù)定積分的計算法則
解答 解:${∫}_{-1}^{1}$$\sqrt{4-{x}^{2}}$dx=2${∫}_{0}^{1}$$\sqrt{4-{x}^{2}}$dx,
由定積分的幾何意義知:${∫}_{0}^{1}$$\sqrt{4-{x}^{2}}$dx是如圖所示的陰影部分曲邊梯形OABC的面積,
其中B(1,$\sqrt{3}$),∠BOC=30°
故${∫}_{0}^{1}$$\sqrt{4-{x}^{2}}$dx=S扇形BOC+S△AOB=$\frac{π}{3}$+$\frac{\sqrt{3}}{2}$,
故${∫}_{-1}^{1}$$\sqrt{4-{x}^{2}}$dx=2${∫}_{0}^{1}$$\sqrt{4-{x}^{2}}$dx=$\frac{2π}{3}$+$\sqrt{3}$,
故${∫}_{-1}^{1}$e|x|dx=2${∫}_{0}^{1}$exdx=2ex|${\;}_{0}^{1}$=2e-2,
故$\int_{-1}^1{({{e^{|x|}}+\sqrt{4-{x^2}}})}dx$=$2e+\frac{2}{3}π-2+\sqrt{3}$,
故答案為:$2e+\frac{2}{3}π-2+\sqrt{3}$,
點評 本題考查定積分的幾何意義,準(zhǔn)確轉(zhuǎn)化為圖形的面積是解決問題的關(guān)鍵,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ?p∧q | C. | p∧?q | D. | ?p∧?q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\frac{15}{8}$ | D. | $\frac{17}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 260 | B. | 280 | C. | 300 | D. | 320 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ①② | C. | ②③④ | D. | ①②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 |
y | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com