20.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且∠F1PF2=$\frac{π}{4}$,則橢圓和雙曲線的離心率乘積的最小值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

分析 設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為a1,雙曲線的半實(shí)軸長(zhǎng)a2,焦距2c.由橢圓及雙曲線定義用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到a1,a2與c的關(guān)系,轉(zhuǎn)化為離心率,再由基本不等式得結(jié)論.

解答 解:如圖,設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為a1,雙曲線的半實(shí)軸長(zhǎng)為a2,則根據(jù)橢圓及雙曲線的定義:
|PF1|+|PF2|=2a1,|PF1|-|PF2|=2a2,
∴|PF1|=a1+a2,|PF2|=a1-a2,
設(shè)|F1F2|=2c,∠F1PF2=$\frac{π}{4}$,則:
在△PF1F2中由余弦定理得,
4c2=(a1+a22+(a1-a22-2(a1+a2)(a1-a2)cos$\frac{π}{4}$,
化簡(jiǎn)得:($2-\sqrt{2}$)a12+($2+\sqrt{2}$)a22=4c2
即$\frac{2-\sqrt{2}}{{{e}_{1}}^{2}}+\frac{2+\sqrt{2}}{{{e}_{2}}^{2}}=4$,
又∵$\frac{2-\sqrt{2}}{{{e}_{1}}^{2}}+\frac{2+\sqrt{2}}{{{e}_{2}}^{2}}≥\frac{2\sqrt{{2}^{2}-2}}{{e}_{1}•{e}_{2}}=\frac{2\sqrt{2}}{{e}_{1}•{e}_{2}}$,
∴$\frac{2\sqrt{2}}{{e}_{1}•{e}_{2}}≤4$,即e1•e2≥$\frac{\sqrt{2}}{2}$,
即橢圓和雙曲線的離心率乘積的最小值為$\frac{\sqrt{2}}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查圓錐曲線的共同特征,考查通過(guò)橢圓與雙曲線的定義求焦點(diǎn)三角形三邊長(zhǎng),解決本題的關(guān)鍵是根據(jù)所得出的條件靈活變形,求出焦點(diǎn)三角形的邊長(zhǎng)來(lái),是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若m=0.52,n=20.5,p=log20.5,則(  )
A.n>m>pB.n>p>mC.m>n>pD.p>n>m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知α為銳角,若cos(α+$\frac{π}{4}$)=$\frac{5}{13}$,則sinα=(  )
A.$\frac{5\sqrt{2}}{13}$B.$\frac{12}{13}$C.$\frac{7\sqrt{2}}{26}$D.$\frac{17\sqrt{2}26}{\;}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若復(fù)數(shù)z滿足(2-i)z=1+i,則復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)A(-2,0),且點(diǎn)(-1,$\frac{3}{2}$)在橢圓上,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn).過(guò)點(diǎn)A作斜率為k(k>0)的直線交橢圓E于另一點(diǎn)B,直線BF2交橢圓E于點(diǎn)C.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若△CF1F2為等腰三角形,求點(diǎn)B的坐標(biāo);
(3)若F1C⊥AB,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,已知直線l:y=kx+1(k>0)關(guān)于直線y=x+1對(duì)稱的直線為l1,直線l,l1與橢圓E:$\frac{x^2}{4}+{y^2}$=1分別交于點(diǎn)A、M和A、N,記直線l1的斜率為k1
(Ⅰ)求k•k1的值;
(Ⅱ)當(dāng)k變化時(shí),試問(wèn)直線MN是否恒過(guò)定點(diǎn)?若恒過(guò)定點(diǎn),求出該定點(diǎn)坐標(biāo);若不恒過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若變量x,y滿足約束條件$\left\{\begin{array}{l}x≥2\\ x+y≤6\\ x-2y≤0\end{array}\right.$,則目標(biāo)函數(shù)z=x-y的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知數(shù)列xn=an2+bn+c,n∈N*,使得x100+k,x200+k,x300+k成等差數(shù)列的必要條件是(  )
A.a≥0B.b≤0C.c=0D.a-2b+c=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為$ρcos({θ-\frac{π}{3}})=1$,M,N分別為C與x軸,y軸的交點(diǎn).
(1)寫(xiě)出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);
(2)設(shè)MN的中點(diǎn)為P,求以P為圓心,且過(guò)原點(diǎn)的圓的參數(shù)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案