【題目】下列命題中,正確的共有( )
①因?yàn)橹本是無(wú)限的,所以平面內(nèi)的一條直線就可以延伸到平面外去;
②兩個(gè)平面有時(shí)只相交于一個(gè)公共點(diǎn);
③分別在兩個(gè)相交平面內(nèi)的兩條直線如果相交,則交點(diǎn)只可能在兩個(gè)平面的交線上;
④一條直線與三角形的兩邊都相交,則這條直線必在三角形所在的平面內(nèi).
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
【答案】C
【解析】解:對(duì)于①,因?yàn)槠矫嬉彩强梢詿o(wú)限延伸的,故錯(cuò)誤;
對(duì)于②,兩個(gè)平面只要有一個(gè)公共點(diǎn),就有一條通過(guò)該點(diǎn)的公共直線,故錯(cuò)誤;
對(duì)于③,交點(diǎn)分別含于兩條直線,也分別含于兩個(gè)平面,必然在交線上,故正確;
對(duì)于④,一條直線與三角形的兩邊都相交,則兩交點(diǎn)在三角形所在的平面內(nèi),則這條直線必在三角形所在的平面內(nèi),故正確.
故選:C.
【考點(diǎn)精析】掌握平面的基本性質(zhì)及推論是解答本題的根本,需要知道如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi);過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面;如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2x+1)ex(e是自然對(duì)數(shù)的底),則函數(shù)f(x)在點(diǎn)(0,1)處的切線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知z=m﹣1+(m+2)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)m的取值范圍是( 。
A.(﹣1,2)
B.(﹣2,1)
C.(1,+∞)
D.(﹣∞,﹣2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.命題“x∈R,ex>0”的否定是“x∈R,ex>0”
B.命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
C.“x2+2x≥ax在x∈[1,2]上恒成立”“對(duì)于x∈[1,2],有(x2+2x)min≥(ax)max”
D.命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個(gè)零點(diǎn)”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n是兩條不同直線,α,β是兩個(gè)不同的平面,且nβ,則下列敘述正確的是( )
A.若m∥n,mα,則α∥β
B.若α∥β,mα,則m∥n
C.若m∥n,m⊥α,則α⊥β
D.若α∥β,m⊥n,則m⊥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知條件p:|x﹣1|<2,條件q:x2﹣5x﹣6<0,則p是q的( )
A.充分必要條件
B.充分不必要條件
C.必要不充分條件
D.既不充分又不必要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com