【題目】已知m,n是兩條不同直線,α,β是兩個不同的平面,且nβ,則下列敘述正確的是(
A.若m∥n,mα,則α∥β
B.若α∥β,mα,則m∥n
C.若m∥n,m⊥α,則α⊥β
D.若α∥β,m⊥n,則m⊥α

【答案】C
【解析】解:由m,n是兩條不同直線,α,β是兩個不同的平面,且nβ,知:
若m∥n,mα,則α與β相交或平行,故A錯誤;
若α∥β,mα,則m與n平行或異面,故B錯誤;
若m∥n,m⊥α,則由平面與平面垂直的判定定理得α⊥β,故C正確;
若α∥β,m⊥n,則m與α相交、平行或mα,故D錯誤.
故選:C.
【考點精析】利用空間中直線與平面之間的位置關系對題目進行判斷即可得到答案,需要熟知直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】方程x3﹣3x+1=0的一個根在區(qū)間(k,k+1)(k∈N )內(nèi),則k=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,正確的共有(
①因為直線是無限的,所以平面內(nèi)的一條直線就可以延伸到平面外去;
②兩個平面有時只相交于一個公共點;
③分別在兩個相交平面內(nèi)的兩條直線如果相交,則交點只可能在兩個平面的交線上;
④一條直線與三角形的兩邊都相交,則這條直線必在三角形所在的平面內(nèi).
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于任意的直線l與平面α,在平面α內(nèi)必有直線m,使m與l(
A.平行
B.相交
C.垂直
D.互為異面直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|x>-1},B={x||x|≥1},則“x∈A且xB”成立的充要條件是( )
A.-1<x≤1
B.x≤1
C.x>-1
D.-1<x<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)=x(x-2),則不等式xf(x)>0的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A{x|x2﹣3x+2=0,x∈R },B={x|0<x<5,x∈N },則滿足條件ACB的集合C的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=ax+2-1(a>0且a≠1)的圖象恒過的點是( )
A.(0,0)
B.(0,-1)
C.(-2,0)
D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c是不重合的直線,α,β是不重合的平面,以下結論正確的是(將正確的序號均填上).
①若a∥b,bα,則a∥α;
②若a⊥b,a⊥c,bα,ca,則a⊥α;
③若a⊥α,aβ,則α⊥β
④若a∥β,b∥β,aα,bα,則α∥β.

查看答案和解析>>

同步練習冊答案