A. | -$\frac{\sqrt{6}}{3}$ | B. | -$\frac{\sqrt{6}}{6}$ | C. | $\frac{\sqrt{6}}{6}$ | D. | $\frac{\sqrt{6}}{3}$ |
分析 由已知利用誘導公式可求sinα,利用誘導公式,同角三角函數(shù)基本關(guān)系式化簡所求即可得解.
解答 解:∵sin(π-α)=-$\frac{{\sqrt{3}}}{3}$,且α∈(π,$\frac{3π}{2}$),
∴sinα=-$\frac{{\sqrt{3}}}{3}$,
∴sin($\frac{π}{2}$+α)=cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{6}}{3}$.
故選:A.
點評 本題主要考查了誘導公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{AB}$ | B. | $\overrightarrow{BC}$ | C. | $\overrightarrow{DA}$ | D. | $\overrightarrow 0$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{13}$ | B. | $-\frac{4}{13}$ | C. | $\frac{7}{13}$ | D. | $-\frac{7}{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[kπ+\frac{π}{6},kπ+\frac{7π}{6}]k∈{Z}$ | B. | $[kπ+\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$ | ||
C. | $[kπ+\frac{π}{12},kπ+\frac{7π}{6}]k∈{Z}$ | D. | $[kπ-\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{AD}$ | B. | $\overrightarrow{BD}$ | C. | $\overrightarrow{AC}$ | D. | $\overrightarrow{0}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com