【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,為邊長等于的正方形,△和△均為正三角形,在三棱錐中,

1)求證:;

2)求與平面所成的角的大;

3)求二面角的大小.

【答案】1)證明見解析;(2;(3.

【解析】

1)取的中點(diǎn),連,,通過證明平面,可以得到

2)根據(jù)題意可以證明平面,從而可知就是與平面所成的角;容易計(jì)算得到其大小;

3)取的中點(diǎn),連,易證得就是二面角的平面角,然后在直角三角形中求得結(jié)果即可.

1)證明:取的中點(diǎn),連,,如圖:

根據(jù)展開圖可知,,,所以,,

,所以平面

因?yàn)?/span>平面,所以

2)根據(jù)展開圖可知,且

所以,又,所以,

所以平面,所以就是與平面所成的角,

,

所以與平面所成的角的大小為.

3)取的中點(diǎn),連,,如圖:

由(2)可知,由(1)知,且,

所以平面,所以,

根據(jù)等腰三角形的性質(zhì)易得,又,所以平面,

所以,所以就是二面角的平面角,

在直角三角形中,,

在直角三角形中,,

由題知二面角為銳角,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20194月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實(shí)施方案,決定從2018年秋季入學(xué)的高中一年級學(xué)生開始實(shí)施高考模式.所謂,即“3”是指考生必選語文、數(shù)學(xué)、外語這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學(xué)、思想政治、地理四科中任選兩科.

1)若某考生按照模式隨機(jī)選科,求選出的六科中含有語文,數(shù)學(xué),外語,物理,化學(xué)的概率.

2)新冠疫情期間,為積極應(yīng)對新高考改革,某地高一年級積極開展線上教學(xué)活動.教育部門為了解線上教學(xué)效果,從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語數(shù)外的網(wǎng)絡(luò)測試,并給前400名頒發(fā)榮譽(yù)證書,假設(shè)該次網(wǎng)絡(luò)測試成績服從正態(tài)分布,且滿分為450.

①考生甲得知他的成績?yōu)?/span>270分,考試后不久了解到如下情況:此次測試平均成績?yōu)?/span>171分,351分以上共有57,請用你所學(xué)的統(tǒng)計(jì)知識估計(jì)甲能否獲得榮譽(yù)證書,并說明理由;

②考生丙得知他的實(shí)際成績?yōu)?/span>430分,而考生乙告訴考生丙:這次測試平均成績?yōu)?/span>201分,351分以上共有57,請結(jié)合統(tǒng)計(jì)學(xué)知識幫助丙同學(xué)辨別乙同學(xué)信息的真?zhèn),并說明理由.

附:

;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(2)函數(shù)有幾個零點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ).

(1)如果曲線在點(diǎn)處的切線方程為,求, 的值;

(2)若, ,關(guān)于的不等式的整數(shù)解有且只有一個,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐,平面,且,底面為直角梯形,,,,,、分別為、的中點(diǎn),平面的交點(diǎn)為.

(1)求的長度;

(2)求截面的底面所成二面角的大。

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】焦距為的橢圓(),如果滿足“”,則稱此橢圓為“等差橢圓”.

1)如果橢圓()是“等差橢圓”,求的值;

2)如果橢圓 ()是“等差橢圓”,過作直線與此“等差橢圓”只有一個公共點(diǎn),求此直線的斜率;

3)橢圓()是“等差橢圓”,如果焦距為12,求此“等差橢圓”的方程;

4)對于焦距為12的“等差橢圓”,點(diǎn)為橢圓短軸的上頂點(diǎn),為橢圓上異于點(diǎn)的任一點(diǎn),關(guān)于原點(diǎn)的對稱點(diǎn)(也異于),直線分別與軸交于兩點(diǎn),判斷以線段為直徑的圓是否過定點(diǎn)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015秋運(yùn)城期中)已知函數(shù)f(x)=(log2x﹣2)(log4x﹣).

(1)當(dāng)x[1,4]時,求該函數(shù)的值域;

(2)若f(x)≤mlog2x對于x[4,16]恒成立,求m得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2m+3x+m2+20

1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;

2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x2231+|x1x2|,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程的四個根組成一個首項(xiàng)為的等差數(shù)列,則_____

查看答案和解析>>

同步練習(xí)冊答案