【題目】20194月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實(shí)施方案,決定從2018年秋季入學(xué)的高中一年級(jí)學(xué)生開始實(shí)施高考模式.所謂,即“3”是指考生必選語(yǔ)文、數(shù)學(xué)、外語(yǔ)這三科;“1”是指考生在物理、歷史兩科中任選一科;“2”是指考生在生物、化學(xué)、思想政治、地理四科中任選兩科.

1)若某考生按照模式隨機(jī)選科,求選出的六科中含有語(yǔ)文,數(shù)學(xué),外語(yǔ),物理,化學(xué)的概率.

2)新冠疫情期間,為積極應(yīng)對(duì)新高考改革,某地高一年級(jí)積極開展線上教學(xué)活動(dòng).教育部門為了解線上教學(xué)效果,從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語(yǔ)數(shù)外的網(wǎng)絡(luò)測(cè)試,并給前400名頒發(fā)榮譽(yù)證書,假設(shè)該次網(wǎng)絡(luò)測(cè)試成績(jī)服從正態(tài)分布,且滿分為450.

①考生甲得知他的成績(jī)?yōu)?/span>270分,考試后不久了解到如下情況:此次測(cè)試平均成績(jī)?yōu)?/span>171分,351分以上共有57,請(qǐng)用你所學(xué)的統(tǒng)計(jì)知識(shí)估計(jì)甲能否獲得榮譽(yù)證書,并說明理由;

②考生丙得知他的實(shí)際成績(jī)?yōu)?/span>430分,而考生乙告訴考生丙:這次測(cè)試平均成績(jī)?yōu)?/span>201分,351分以上共有57,請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)知識(shí)幫助丙同學(xué)辨別乙同學(xué)信息的真?zhèn),并說明理由.

附:;

.

【答案】1;(2)①能,理由見解析;②無(wú)法辨別乙同學(xué)信息真假,理由見解析

【解析】

1)已經(jīng)選出五科,再?gòu)氖S嗳齻(gè)科目中選1個(gè)科目的方法為,計(jì)算出從物理、歷史里選一門,生物、化學(xué)、思想政治、地理4門中選2門的總方案數(shù),即可得其概率.

2)①由題意可知, ,而 ,結(jié)合原則可求得的值,結(jié)合獲獎(jiǎng)概率,并求得,比較后可求得獲獎(jiǎng)的最低成績(jī),即可由甲的成績(jī)得知甲能否獲得榮譽(yù)證書.

②假設(shè)乙所說為真,求得,進(jìn)而求得的值,從而確定的值,即可確定的概率.比較后即可知該事件為小概率事件,而丙已經(jīng)有這個(gè)成績(jī),因而可判斷乙所說為假.

解:(1)設(shè)事件A:選出的六科中含有語(yǔ)文,數(shù)學(xué),外語(yǔ),物理,化學(xué),

2)設(shè)此次網(wǎng)絡(luò)測(cè)試的成績(jī)記為X,則

①由題知,因?yàn)?/span>,且

所以,而,

所以前400名的成績(jī)的最低分高于

,所以甲同學(xué)能獲得榮譽(yù)證書

②假設(shè)乙所說的為真,則

,

,所以,從而

答案示例1:可以認(rèn)為乙同學(xué)信息為假,理由如下:

事件為小概率事件,即丙同學(xué)的成績(jī)?yōu)?/span>430是小概率事件,可認(rèn)為其不可能發(fā)生,但卻又發(fā)生了,所以可認(rèn)為乙同學(xué)信息為假;

答案示例2:無(wú)法辨別乙同學(xué)信息真假,理由如下:

事件丙同學(xué)的成績(jī)?yōu)?/span>430發(fā)生的概率雖然很小,一般不容易發(fā)生,但是還是有可能發(fā)生的,所以無(wú)法辨別乙同學(xué)信息真假.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)滿足:(1);(2);(3)時(shí),.大小關(guān)系

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),,,數(shù)列的前項(xiàng)和,點(diǎn))均在函數(shù)的圖像上.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),是數(shù)列的前項(xiàng)和,求滿足)的最大正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了積極支持雄安新區(qū)建設(shè),某投資公司計(jì)劃明年投資1000萬(wàn)元給雄安新區(qū)甲、乙兩家科技企業(yè),以支持其創(chuàng)新研發(fā)計(jì)劃,經(jīng)有關(guān)部門測(cè)算,若不受中美貿(mào)易戰(zhàn)影響的話,每投入100萬(wàn)元資金,在甲企業(yè)可獲利150萬(wàn)元,若遭受貿(mào)易戰(zhàn)影響的話,則將損失50萬(wàn)元;同樣的情況,在乙企業(yè)可獲利100萬(wàn)元,否則將損失20萬(wàn)元,假設(shè)甲、乙兩企業(yè)遭受貿(mào)易戰(zhàn)影響的概率分別為0.6和0.5.

(1)若在甲、乙兩企業(yè)分別投資500萬(wàn)元,求獲利1250萬(wàn)元的概率;

(2)若在兩企業(yè)的投資額相差不超過300萬(wàn)元,求該投資公司明年獲利約在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有2009個(gè)人站成一排,從第一名開始13報(bào)數(shù),凡報(bào)到3的就退出隊(duì)伍,其余的向前靠攏站成新的一排.再按此規(guī)則繼續(xù)進(jìn)行,直到第次報(bào)數(shù)后只剩下3人為止.試問:最后剩下的3人最初站在什么位置?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),橢圓與雙曲線的焦點(diǎn)相同.

(1)求橢圓與雙曲線的方程;

(2)過雙曲線的右頂點(diǎn)作兩條斜率分別為,的直線,,分別交雙曲線于點(diǎn),不同于右頂點(diǎn)),若,求證:直線的傾斜角為定值,并求出此定值;

(3)設(shè)點(diǎn),若對(duì)于直線,橢圓上總存在不同的兩點(diǎn)關(guān)于直線對(duì)稱,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,三個(gè)內(nèi)角所對(duì)的邊分別為,滿足.

(1) 求角的大;

(2),求的值.(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,為邊長(zhǎng)等于的正方形,△和△均為正三角形,在三棱錐中,

1)求證:

2)求與平面所成的角的大。

3)求二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案