(本小題滿(mǎn)分13分)
已知為平面直角坐標(biāo)系的原點(diǎn),過(guò)點(diǎn)的直線(xiàn)與圓交于,兩點(diǎn).
(I)若,求直線(xiàn)的方程;
(Ⅱ)若與的面積相等,求直線(xiàn)的斜率.
解:(Ⅰ)依題意,直線(xiàn)的斜率存在,
因?yàn)?直線(xiàn)過(guò)點(diǎn),可設(shè)直線(xiàn):.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/33/0/0kojt.gif" style="vertical-align:middle;" />兩點(diǎn)在圓上,所以 ,
因?yàn)?,所以 .
所以 所以 到直線(xiàn)的距離等于.
所以 , 得.
所以 直線(xiàn)的方程為或. …………6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5e/e/kykyq2.gif" style="vertical-align:middle;" />與的面積相等,所以,
設(shè) ,,所以 ,.
所以 即 。*)
因?yàn)椤?img src="http://thumb.zyjl.cn/pic5/tikupic/0a/0/bfjol3.gif" style="vertical-align:middle;" />,兩點(diǎn)在圓上,所以
把(*)代入得 所以
故直線(xiàn)的斜率, 即. ………13分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分10分)
在極坐標(biāo)系中,已知兩點(diǎn)O(0,0),B(2,).
(1)求以OB為直徑的圓C的極坐標(biāo)方程,然后化成直角方程;
(2)以極點(diǎn)O為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為(t為參數(shù)).若直線(xiàn)l與圓C相交于M,N兩點(diǎn),圓C的圓心為C,求DMNC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面直角坐標(biāo)系中O是坐標(biāo)原點(diǎn),,圓是的外接圓,過(guò)點(diǎn)(2,6)的直線(xiàn)為。
(1)求圓的方程;
(2)若與圓相切,求切線(xiàn)方程;
(3)若被圓所截得的弦長(zhǎng)為,求直線(xiàn)的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)在平面直角坐標(biāo)系中,是拋物線(xiàn)的焦點(diǎn),是拋物線(xiàn)上位于第一象限內(nèi)的任意一點(diǎn),過(guò)三點(diǎn)的圓的圓心為,點(diǎn)到拋物線(xiàn)的準(zhǔn)線(xiàn)的距離為.(Ⅰ)求拋物線(xiàn)的方程;(Ⅱ)是否存在點(diǎn),使得直線(xiàn)與拋物線(xiàn)相切于點(diǎn)若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)
已知直線(xiàn),圓.
(Ⅰ)證明:對(duì)任意,直線(xiàn)與圓恒有兩個(gè)公共點(diǎn).
(Ⅱ)過(guò)圓心作于點(diǎn),當(dāng)變化時(shí),求點(diǎn)的軌跡的方程.
(Ⅲ)直線(xiàn)與點(diǎn)的軌跡交于點(diǎn),與圓交于點(diǎn),是否存在的值,使得?若存在,試求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:.
(1)若圓C的切線(xiàn)在x軸和y軸上的截距相等,且截距不為零,求此切線(xiàn)的方程;
(2)從圓C外一點(diǎn)P向該圓引一條切線(xiàn),切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有,
求使得取得最小值的點(diǎn)P的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知⊙C:x2+y2-2x-2y+1=0,直線(xiàn)l與⊙C相切且分別交x軸、y軸正向于A(yíng)、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且=a,=b(a>2,b>2).
(Ⅰ)求線(xiàn)段AB中點(diǎn)的軌跡方程.
(Ⅱ)求△ABC面積的極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)是橢圓的左、右焦點(diǎn),為直線(xiàn)上一點(diǎn),
是底角為的等腰三角形,則的離心率為( )
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com