分析 作DE⊥AB于E,連接BD,根據(jù)相似關(guān)系求出AE,而CD=AB-2AE,從而求出梯形ABCD的周長(zhǎng)y與腰長(zhǎng)x間的函數(shù)解析式,根據(jù)AD>0,AE>0,CD>0,可求出定義域;利用二次函數(shù)在給定區(qū)間上求出最值的知識(shí)可求出函數(shù)的最大值.
解答 解:如圖,作DE⊥AB于E,連接BD.
因?yàn)锳B為直徑,所以∠ADB=90°.
在Rt△ADB與Rt△AED中,∠ADB=90°=∠AED,∠BAD=∠DAE,
所以Rt△ADB∽R(shí)t△AED.
所以$\frac{AD}{AB}$=$\frac{AE}{AD}$,即AE=$\frac{A{D}^{2}}{AB}$.
又AD=x,AB=4,所以AE=$\frac{{x}^{2}}{4}$.
所以CD=AB-2AE=4-$\frac{{x}^{2}}{2}$,
于是y=AB+BC+CD+AD=4+x+4-$\frac{{x}^{2}}{2}$+x=-$\frac{1}{2}$x2+2x+8
由于AD>0,AE>0,CD>0,所以x>0,$\frac{{x}^{2}}{4}$>0,4-$\frac{{x}^{2}}{2}$>0,
解得0<x<2$\sqrt{2}$,
故所求的函數(shù)為y=-$\frac{1}{2}$x2+2x+8(0<x<2)
y=-$\frac{1}{2}$x2+2x+8=-$\frac{1}{2}$(x-2)2+10,
又0<x<2$\sqrt{2}$,所以,當(dāng)x=2時(shí),y有最大值10.
點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題.射影定理的應(yīng)用是解決此題的關(guān)鍵,二次函數(shù)在解決實(shí)際問(wèn)題中求解最值的常用的方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ac>bc | B. | a2>b2 | C. | a3>b3 | D. | $\frac{1}{a}>\frac{1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 8+log23 | C. | 9+log23 | D. | 7+log23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m≤2 | B. | m<2 | C. | m≤-2 | D. | m<-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com