6.如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上,則梯形周長(zhǎng)的最大值為10.

分析 作DE⊥AB于E,連接BD,根據(jù)相似關(guān)系求出AE,而CD=AB-2AE,從而求出梯形ABCD的周長(zhǎng)y與腰長(zhǎng)x間的函數(shù)解析式,根據(jù)AD>0,AE>0,CD>0,可求出定義域;利用二次函數(shù)在給定區(qū)間上求出最值的知識(shí)可求出函數(shù)的最大值.

解答 解:如圖,作DE⊥AB于E,連接BD.
因?yàn)锳B為直徑,所以∠ADB=90°.
在Rt△ADB與Rt△AED中,∠ADB=90°=∠AED,∠BAD=∠DAE,
所以Rt△ADB∽R(shí)t△AED.
所以$\frac{AD}{AB}$=$\frac{AE}{AD}$,即AE=$\frac{A{D}^{2}}{AB}$.
又AD=x,AB=4,所以AE=$\frac{{x}^{2}}{4}$.
所以CD=AB-2AE=4-$\frac{{x}^{2}}{2}$,
于是y=AB+BC+CD+AD=4+x+4-$\frac{{x}^{2}}{2}$+x=-$\frac{1}{2}$x2+2x+8
由于AD>0,AE>0,CD>0,所以x>0,$\frac{{x}^{2}}{4}$>0,4-$\frac{{x}^{2}}{2}$>0,
解得0<x<2$\sqrt{2}$,
故所求的函數(shù)為y=-$\frac{1}{2}$x2+2x+8(0<x<2)
y=-$\frac{1}{2}$x2+2x+8=-$\frac{1}{2}$(x-2)2+10,
又0<x<2$\sqrt{2}$,所以,當(dāng)x=2時(shí),y有最大值10.

點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題.射影定理的應(yīng)用是解決此題的關(guān)鍵,二次函數(shù)在解決實(shí)際問(wèn)題中求解最值的常用的方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中角A,B,C所對(duì)的邊分別為a,b,c,滿足ccosB+(b-2a)cosC=0.且c=2$\sqrt{3}$
(1)求角C的大。
(2)求△ABC面積最大值,并判斷此時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a,b,c∈R且a>b,則下列選項(xiàng)中正確的是( 。
A.ac>bcB.a2>b2C.a3>b3D.$\frac{1}{a}>\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知正項(xiàng)等比數(shù)列{an}中,a1a5=9,S3=$\frac{21}{4}$,則log2a10的值為( 。
A.8B.8+log23C.9+log23D.7+log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)f(x)=ax-4x3,對(duì)?x∈[-1,1]總有f(x)≤1,則a的取值范圍是{3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=a(x2+1).若對(duì)任意a∈(-4,-2)及x∈[1,3]時(shí),恒有ma-f(x)>a2+lnx成立,則實(shí)數(shù)m的取值范圍為( 。
A.m≤2B.m<2C.m≤-2D.m<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an},a4=28,且滿足$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n.
(1)求a1,a2,a3的值;
(2)試猜想數(shù)列{an}的通項(xiàng)公式,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列說(shuō)法:
①分類變量A與B的隨機(jī)變量x2越大,說(shuō)明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=2,$\overline x=1,\overline y=3$,則a=1.正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓E的中心在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,其右焦點(diǎn)為F(1,0),點(diǎn)A(0,1)在橢圓上,過(guò)點(diǎn)A作兩條直線,與橢圓E分別交于M,N兩點(diǎn),直線AM,AN的斜率乘積為-1.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)求證:直線MN過(guò)定點(diǎn),并求定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案