分析 (1)根據(jù)題意,由正弦定理與三角形內(nèi)角和定理求出cosC和C的值;
(2)由余弦定理和基本不等式求出△ABC面積最大值時(shí),三角形為等邊三角形.
解答 解:(1)△ABC中,ccosB+(b-2a)cosC=0,
由正弦定理得,
sinC•cosB+(sinB-2sinA)cosC=0,
∴sinC•cosB+cosCsinB-2sinAcosC=0,
∴sin(B+C)=2sinAcosC=sinA;
又∵sinA≠0,
∴cosC=$\frac{1}{2}$,
又0<C<π,
∴C=$\frac{π}{3}$;…(6分)
(2)由余弦定理得,
c2=a2+b2-2abcosC,
∴12=a2+b2-ab≥2ab-ab=ab,
即ab≤12,當(dāng)且僅當(dāng)$a=b=2\sqrt{3}$時(shí)取最大值;
且S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×2$\sqrt{3}$×2$\sqrt{3}$×sin$\frac{π}{3}$=3$\sqrt{3}$;…(10分)
此時(shí)三角形為等邊三角形.…(12分)
點(diǎn)評(píng) 本題考查了正弦、余弦定理的應(yīng)用問題,也考查了三角恒等變換與基本不等式的應(yīng)用問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com