16.若函數(shù)f(x)=3x+lnx的圖象在點(1,f(1))處的切線與直線x+ay+1=0垂直,則a=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-4D.4

分析 先求出f(x)=3x+lnx的導(dǎo)數(shù),再求出函數(shù)f(x)=3x+lnx的圖象在點(1,f(1))處的切線的斜率,根據(jù)兩直線垂直可解出a的值.

解答 解:函數(shù)f(x)=3x+lnx的導(dǎo)數(shù)為f′(x)=3+$\frac{1}{x}$,
∴f(x)的圖象在點(1,f(1))處的切線斜率k=f′(1)=3+1=4,
∵直線x+ay+1=0的斜率為-$\frac{1}{a}$,
∴由兩直線垂直的條件:斜率之積為-1,可得-$\frac{1}{a}$•4=-1,
∴a=4.
故選:D.

點評 本題考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,正確求導(dǎo)和運用兩直線垂直的條件:斜率之積為-1,考查了運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sin(2ωx-$\frac{π}{6}}$)-4sin2ωx+2({ω>0}),其圖象與x軸相鄰的兩個交點的距離為$\frac{π}{2}$.
(I)求函數(shù)的f(x)解析式;
(Ⅱ)若將f(x)的圖象向左平移m(m>0)個長度單位得到函數(shù)g(x)的圖象恰好經(jīng)過點(${-\frac{π}{3}$,0),求當(dāng)m取得最小值時,g(x)在[${-\frac{π}{6}$,$\frac{7π}{12}}$]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知公差大于零的等差數(shù)列{an}的前n項和為Sn,且滿足:a2a4=65,a1+a5=18.
(1)求數(shù)列{an}的通項公式和前n項和Sn
(2)設(shè)bn=$\frac{n}{(2n+1)Sn}$,數(shù)列{bn}的前n項和Tn,證明:Tn<$\frac{1}{2}$對于任意的正整數(shù)n均成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.直角△ABC中,A<C,且cos(A-C)=sinC,則sinC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.一個等比數(shù)列的第9項是$\frac{4}{9}$,公比是-$\frac{1}{3}$.求它的第1項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某城區(qū)有農(nóng)民、工人、知識分子家庭共計2 000戶,其中農(nóng)民家庭1 800戶,工人家庭100戶.現(xiàn)要從中抽取容量為40的樣本調(diào)查家庭收入情況,則在整個抽樣過程中,可以用到的抽樣方法的是.(填序號)①②③
①簡單隨機抽樣;②系統(tǒng)抽樣;③分層抽樣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i是虛數(shù)單位,復(fù)數(shù)z=$\frac{1}{a-i}$(a∈R)在復(fù)平面內(nèi)對應(yīng)的點位于直線y=2x上,則a=( 。
A.2B.$\frac{1}{2}$C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,1)上為增函數(shù)的是( 。
A.y=ln|x|B.y=x-2C.y=x+sinxD.y=cos(-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a<-1,函數(shù)f(x)=|x3-1|+x3+ax(x∈R).
(I)求函數(shù)f(x)的最小值;
(Ⅱ)若函數(shù)f(x)有兩個零點x1,x2,試判斷f(x1x2)與a+1的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案