【題目】在直角坐標系中,橢圓的左、右焦點分別為 也是拋物線的焦點,點在第一象限的交點,且.

(1)求的方程;

(2)平面上的點滿足,直線,且與交于兩點,若,求直線的方程.

【答案】(1);(2),或.

【解析】試題分析:(1)由拋物線定義確定M點坐標,代人橢圓方程,再結合焦點坐標,列方程組解得(2)由,直線,得的斜率相同,再根據(jù),得.設直線方程.并與橢圓方程聯(lián)立,結合韋達定理代人化簡可得m值

試題解析:(1)由,

上,因為,所以,

.

上,且橢圓的半焦距,于是

消去并整理得

解得 (不合題意,舍去).

故橢圓的方程為.

(2)由知四邊形是平行四邊形,其中心為坐標原點.

因為,所以的斜率相同,

的斜率.

的方程為.

消去并化簡得,

.

因為,所以.

.

所以.

此時,

故所求直線的方程為,或.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知兩定點, 和一動點,給出下列結論:

①若,則點的軌跡是橢圓;

②若,則點的軌跡是雙曲線;

③若,則點的軌跡是圓;

④若,則點的軌跡關于原點對稱;

⑤若直線斜率之積等于,則點的軌跡是橢圓(除長軸兩端點).

其中正確的是__________(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,,.

(1)求數(shù)列的通項公式;

(2)設數(shù)列滿足:

對于任意,都有成立.

①求數(shù)列的通項公式;

②設數(shù)列,問:數(shù)列中是否存在三項,使得它們構成等差數(shù)列?若存在,求出這三項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,四邊形是菱形, ,又平面,

是棱的中點, 在棱上,且.

(1)證明:平面平面

(2)若平面,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點,F在棱AC上,且AF=3FC

(1)求三棱錐D-ABC的體積

(2)求證:平面DAC⊥平面DEF;

(3)若MDB中點,N在棱AC上,且CN=CA,求證:MN∥平面DEF

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點,

在此幾何體中,給出下面四個結論:

直線BE與直線CF異面; 直線BE與直線AF異面;

直線EF平面PBC; 平面BCE平面PAD.

其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點的直線與圓相切,且與直線垂直,則( )

A. 2 B. 1 C. D.

【答案】A

【解析】因為點P(2,2)滿足圓的方程,所以P在圓上,

又過點P(2,2)的直線與圓相切,且與直線axy+1=0垂直,

所以切點與圓心連線與直線axy+1=0平行,

所以直線axy+1=0的斜率為: .

故選A.

點睛:對于直線和圓的位置關系的問題,可用“代數(shù)法”或“幾何法”求解,直線與圓的位置關系體現(xiàn)了圓的幾何性質和代數(shù)方法的結合,“代數(shù)法”與“幾何法”是從不同的方面和思路來判斷的,解題時不要單純依靠代數(shù)計算,若選用幾何法可使得解題過程既簡單又不容易出錯.

型】單選題
束】
23

【題目】分別是雙曲線的左、右焦點.若點在雙曲線上,且,則 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市政府為了節(jié)約生活用電,計劃在本市試行居民生活用電定額管理,即確定一個居民月用電量標準,用電量不超過的部分按平價收費,超出的部分按議價收費.為此,政府調查了100戶居民的月平均用電量(單位:度),以, , , , , 分組的頻率分布直方圖如圖所示.

(1)求直方圖中的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)如果當?shù)卣M?/span>左右的居民每月的用電量不超出標準,根據(jù)樣本估計總體的思想,你認為月用電量標準應該定為多少合理?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中, 底面, , , , 是棱上一點.

I)求證:

II)若, 分別是, 的中點,求證: 平面

III)若二面角的大小為,求線段的長.

查看答案和解析>>

同步練習冊答案