如圖. 直三棱柱ABC —A1B1C1中,A1B1= A1C1,點D、E分別是棱BC,CC1上的點(點D不同于點C),且AD⊥DE,F(xiàn)為B1C1的中點.
求證:(1)平面ADE⊥平面BCC1B1
(2)直線A1F∥平面ADE.

(1)詳見解析;(2)詳見解析.

解析試題分析:(1)由面面垂直的判定定理可知:要證兩個平面互相垂直,只須證明其中一個平面內(nèi)的一條直線與另一個平面垂直即可;觀察圖形及已知條件可知:只須證平面ADE內(nèi)的直線AD與平面BCC1B1垂直即可;而由已知有: AD⊥DE,又在直三棱柱中易知CC1⊥面ABC,而AD平面ABC, CC1⊥AD,從而有AD⊥面B CC1 B1,所以有平面ADE⊥平面BCC1B1;(2)由線面平行的判定定理可知:要證線面平行,只須證明直線與平面內(nèi)的某一條直線平行即可;不難發(fā)現(xiàn)只須證明A1F∥AD,由(1)知AD⊥面B CC1 B1,故只須證明A1F⊥平面BCC1B1,這一點很容易獲得.
試題解析:(1)ABC—A1B1C1是直三棱柱,CC1⊥面ABC,
又AD平面ABC, CC1⊥AD
AD⊥DE,CC1,DE平面B CC1B1,CC1∩DE=E
AD⊥面B CC1 B1又AD面ADE
平面ADE⊥平面BCC1B1                 6分
(2) A1B1= A1C1,F(xiàn)為B1C1的中點,AF⊥B1C1
      CC1⊥面A1B1C1且A,F平面A1B1C1
 CC1⊥A、F
又CC1,A,F平面BCC1B1,CC1∩B1C1= C1
 A1F⊥平面BCC1B由(1)知AD ⊥平面BCC1B1
 A1F∥AD,又AD平面ADE,A1F平面ADE
 A1F∥平面ADE                12分
考點:1.面面垂直;2.線面平行.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱中,,分別為的中點.

(1)求證:平面;(5分)
(2)求三棱錐的體積.(7分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,平面平面,且四邊形為矩形,四邊形為直角梯形,,,,
(1)求證平面;(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,⊥底面,底面  
為正方形,,分別是,的 中點.
(1)求證:平面;
(2)求證:;
(3)若是線段上一動點,試確定點位置,
使平面,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,平面,,依次是的中點.

(1)求證:;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱柱中,已知平面平面,.
(1) 求證:
(2) 若為棱上的一點,且平面,求線段的長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在如圖所示的多面體中,四邊形都為矩形。

(Ⅰ)若,證明:直線平面;
(Ⅱ)設分別是線段,的中點,在線段上是否存在一點,使直線平面?請證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖菱形ABEF所在平面與直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,點H、G分別是線段EF、BC的中點.
(1)求證:平面AHC平面;(2)點M在直線EF上,且平面,求平面ACH與平面ACM所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖所示,在正方體ABCDA1B1C1D1中,M、N分別是棱AB、CC1的中點,△MB1P的頂點P在棱CC1與棱C1D1上運動,
有以下四個命題:

A.平面MB1PND1
B.平面MB1P⊥平面ND1A1;
C.△MB1P在底面ABCD上的射影圖形的面積為定值;
D.△MB1P在側(cè)面D1C1CD上的射影圖形是三角形.
其中正確命題的序號是__________.

查看答案和解析>>

同步練習冊答案