如圖菱形ABEF所在平面與直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,點(diǎn)H、G分別是線段EF、BC的中點(diǎn).
(1)求證:平面AHC平面;(2)點(diǎn)M在直線EF上,且平面,求平面ACH與平面ACM所成銳角的余弦值.
(1)詳見解析;(2)平面ACH與平面ACM所成銳角的余弦值為.
解析試題分析:(1)要證面面垂直,首先證線面垂直.那么在本題中證哪條線垂直哪個(gè)面?結(jié)合條件可得,,所以面AHC,從而平面AHC平面BCE.(2)因?yàn)锳D、AB、AH兩兩互相垂直,故分別以AD、AB、AH所在直線為軸、軸、軸建立空間直角坐標(biāo)系,然后利用空間向量即可求解.
(1)在菱形ABEF中,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/21/9/fknwr3.png" style="vertical-align:middle;" />,所以是等邊三角形,又因?yàn)镠是線段EF的中點(diǎn),所以
因?yàn)槊鍭BEF面ABCD,且面ABEF面ABCD=AB,
所以AH面ABCD,所以
在直角梯形中,AB=2AD=2CD=4,,得到,從而,所以,又AHAC=A
所以面AHC,又面BCE,所以平面AHC平面BCE .6分
(2)分別以AD、AB、AH所在直線為軸、軸、軸建立空間直角坐標(biāo)系,則有
設(shè)點(diǎn),則存在實(shí)數(shù),使得,代入解得
由(1)知平面AHC的法向量是
設(shè)平面ACM的法向量是,則得
所以
即平面ACH與平面ACM所成銳角的余弦值為. 12分
考點(diǎn):(1)空間直線與平面的關(guān)系;(2)二面角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖. 直三棱柱ABC —A1B1C1中,A1B1= A1C1,點(diǎn)D、E分別是棱BC,CC1上的點(diǎn)(點(diǎn)D不同于點(diǎn)C),且AD⊥DE,F(xiàn)為B1C1的中點(diǎn).
求證:(1)平面ADE⊥平面BCC1B1
(2)直線A1F∥平面ADE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)設(shè)平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
(2)設(shè)F是BC的中點(diǎn),求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面 ,,是的中點(diǎn),作交于點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)(2011•廣東)如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).
(1)證明:O1′,A′,O2,B四點(diǎn)共面;
(2)設(shè)G為A A′中點(diǎn),延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABCD是邊長為2的正方形,,ED=1,//BD,且.
(1)求證:BF//平面ACE;
(2)求證:平面EAC平面BDEF;
(3)求二面角B-AF-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,BC=2AD,AC,Q是線段PB的中點(diǎn).
(1)求證:平面PAC;
(2)求證:AQ//平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)面底面,,分別為,中點(diǎn),.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一點(diǎn),使平面?若存在,指出點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com