分析 (1)1∈A時(shí),方程ax2+2x+1=0的實(shí)數(shù)根為1,由此求出a的值以及對(duì)應(yīng)方程的實(shí)數(shù)根即可;
(2)討論a=0和a≠0時(shí),方程ax2+2x+1=0有一個(gè)實(shí)數(shù)根即可.
解答 解:A={x|ax2+2x+1=0,a∈R}.
(1)當(dāng)1∈A時(shí),方程ax2+2x+1=0的實(shí)數(shù)根為1,
∴a+2+1=0,解得a=-3;
∴方程為-3x2+2x+1=0,
解得x=1或x=-$\frac{1}{3}$;
∴A={1,-$\frac{1}{3}$};
(2)當(dāng)a=0時(shí),方程ax2+2x+1=0為2x+1=0,
解得x=-$\frac{1}{2}$,A={-$\frac{1}{2}$};
當(dāng)a≠0時(shí),若集合A只有一個(gè)元素,
由一元二次方程ax2+2x+1=0判別式△=4-4a=0,
解得a=1;
綜上,當(dāng)a=0或a=1時(shí),集合A只有一個(gè)元素.
所以a的值組成的集合B={0,1}.
點(diǎn)評(píng) 本題考查了元素與集合的應(yīng)用問題,解題時(shí)容易漏掉a≠0的情況,要根據(jù)情況進(jìn)行討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①④ | B. | ②④ | C. | ②③ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{2}$] | B. | (0,$\frac{\sqrt{3}}{2}$] | C. | [$\frac{1}{2}$,1) | D. | [$\frac{\sqrt{3}}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com