2.已知函數(shù)$f(x)={log_2}\frac{{2({1+x})}}{x-1}$,若f(a)=2,則f(-a)=0.

分析 由題意,f(a)+f(-a)=$lo{g}_{2}[\frac{2(1+a)}{a-1}•\frac{2(1-a)}{-a-1}]$=2,即可得出結論.

解答 解:由題意,f(a)+f(-a)=$lo{g}_{2}[\frac{2(1+a)}{a-1}•\frac{2(1-a)}{-a-1}]$=2,
∵f(a)=2,∴f(-a)=0,
故答案為0.

點評 本題考查函數(shù)的性質,考查對數(shù)的運算性質,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.等比數(shù)列{an}的前n項和為Sn,若a2+S3=0,則公比q=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AD,DD1的中點,AB=4,則過B,E,F(xiàn)的平面截該正方體所得的截面周長為( 。
A.6$\sqrt{2}$+4$\sqrt{5}$B.6$\sqrt{2}$+2$\sqrt{5}$C.3$\sqrt{2}$+4$\sqrt{5}$D.3$\sqrt{2}$+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和Sn和通項an滿足Sn=$\frac{1}{2}$(1-an).
(1)求數(shù)列{an}的通項公式;
(2)設函數(shù)f(x)=log${\;}_{\frac{1}{3}}$x,bn=f(a1)+f(a2)+…+f(an),Tn=$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{n}}$,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,M、N分別是四面體OABC的棱AB與OC的中點,已知向量$\overrightarrow{MN}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,則xyz=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知$f(x)=sin(2017x+\frac{π}{6})+cos(2017x-\frac{π}{3})$的最大值為A,若存在實數(shù)x1,x2使得對任意實數(shù)x總有f(x1)≤f(x)≤f(x2)成立,則A|x1-x2|的最小值為(  )
A.$\frac{π}{2017}$B.$\frac{2π}{2017}$C.$\frac{4π}{2017}$D.$\frac{π}{4034}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=x3-2x,則f(3)=( 。
A.1B.19C.21D.35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖是一名籃球運動員在最近5場比賽中所得分數(shù)的莖葉圖,若該運動員在這5場比賽中的得分的中位數(shù)為12,則該運動員這5場比賽得分的平均數(shù)不可能為( 。
A.$\frac{68}{5}$B.$\frac{69}{5}$C.14D.$\frac{71}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.${4^{\frac{1}{2}}}+{log_3}$9=4.

查看答案和解析>>

同步練習冊答案