7.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}\right.$,則$z=\frac{y}{x+1}$的最小值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

分析 作出約束條件的平面區(qū)域,易知$z=\frac{y}{x+1}$的幾何意義是點(diǎn)A(x,y)與點(diǎn)D(-1,0)連線的直線的斜率,從而解得.

解答 解:由題意作平面區(qū)域如下,
$z=\frac{y}{x+1}$的幾何意義是點(diǎn)A(x,y)與點(diǎn)D(-1,0),連線的直線的斜率,
故當(dāng)A(1,1)時(shí),z=$\frac{y}{x+1}$有最小值,
z=$\frac{1}{1+1}$=$\frac{1}{2}$;
故選:B.

點(diǎn)評(píng) 本題考查了平面向量的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,同時(shí)考查了斜率公式的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.36B.30C.24D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若x1、x2、x3、…、x10的平均數(shù)為3,則3(x1-2)、3(x2-2)、3(x3-2)、…、3(x10-2)的平均數(shù)為( 。
A.3B.9C.18D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知f(x)=$\left\{\begin{array}{l}{3{x}^{2}+ln(\sqrt{1+{x}^{2}}+x),x≥0}\\{3{x}^{2}+ln(\sqrt{1+{x}^{2}}-x),x<0}\end{array}\right.$,若f(x-1)<f(2x+1),則x的取值范圍為{x|x>0,或x<-2 }.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和有最大值,若$\frac{{{a_{25}}}}{{{a_{24}}}}$<-1,當(dāng)其前n項(xiàng)和Sn>0時(shí)n的最大值是( 。
A.24B.25C.47D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知定義在(0,+∞)上連續(xù)可導(dǎo)的函數(shù)f(x)滿足xf'(x)+f(x)=x,且f(1)=1,則( 。
A.f(x)是增函數(shù)B.f(x)是減函數(shù)C.f(x)有最大值1D.f(x)有最小值1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在如圖所示的六面體中,面ABCD是邊長(zhǎng)為2的正方形,面ABEF是直角梯形,∠FAB=90°,AF∥BE,BE=2AF=4.
(Ⅰ)求證:AC∥平面DEF;
(Ⅱ)若二面角E-AB-D為60°,求直線CE和平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的焦點(diǎn)坐標(biāo)為(-4,0),(4,0),離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在棱長(zhǎng)為a的正方體ABCD A1B1C1D1中,A到平面B1C的距離為a,A到平面BB1D1D的距離為$\frac{\sqrt{2}}{2}$a,AA1到平面BB1D1D的距離為$\frac{\sqrt{2}}{2}$a.

查看答案和解析>>

同步練習(xí)冊(cè)答案