17.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.36B.30C.24D.20

分析 由已知中的三視圖,我們可以判斷該幾何體是由一個(gè)直三棱柱和一個(gè)四棱錐組成,分別求出棱柱和棱錐的體積,進(jìn)而可得答案.

解答 解:由已知中的該幾何體是由一個(gè)直三棱柱和一個(gè)四棱錐組成的組合體,
其中直三棱的底面為左視圖,高為6-3=3,
故V直三棱柱=6×3=18,
四棱錐的底面為邊長為3,4的長方體,高為4
故V四棱錐=$\frac{1}{3}$×3×4×3=12,
故該幾何體的體積V=V直三棱柱+V四棱錐=30,
故選B.

點(diǎn)評 本題考查的知識(shí)點(diǎn)是由三視圖求體積,其中根據(jù)三視圖判斷出幾何體的形狀,并找出棱長、高等關(guān)鍵的數(shù)據(jù)是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知過球面上A,B,C三點(diǎn)的截面和球心的距離等于球半徑的一半,且AB=BC=CA=2,則球面的面積是$\frac{64π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若正數(shù)x,y滿足15x-y=22,則x3+y3-x2-y2的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知正三角形ABC的三個(gè)頂點(diǎn)都在球心為O、半徑為3的球面上,且三棱錐O-ABC的高為2,點(diǎn)D是線段BC的中點(diǎn),過點(diǎn)D作球O的截面,則截面積的最小值為(  )
A.$\frac{15π}{4}$B.C.$\frac{7π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.4$\sqrt{2}$+6B.4$\sqrt{2}$+8C.4$\sqrt{2}$+12D.4$\sqrt{2}$+10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為${S_n},{a_1}=2,{a_{n+1}}-{S_n}=2({n∈{N^*}})$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三棱錐S-ABC的所有頂點(diǎn)都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,則球O的表面積為( 。
A.$\frac{{\sqrt{3}}}{2}π$B.$\frac{3}{2}π$C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=axlnx+b(a,b∈R),若f(x)的圖象在x=1處的切線方程為2x-y=0,則a+b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}\right.$,則$z=\frac{y}{x+1}$的最小值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

同步練習(xí)冊答案