5.直線(xiàn)ax+6y+c=0(a、b∈R)與圓x2+y2=1交于不同的兩點(diǎn)A、B,若$\overrightarrow{OA}•\overrightarrow{OB}$=-$\frac{1}{2}$,其中0為坐標(biāo)原點(diǎn),則|AB|=( 。
A.$\frac{{\sqrt{3}}}{2}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.$\sqrt{3}$

分析 由題意畫(huà)出圖形,結(jié)合數(shù)量積求得∠AOB=120°,則|AB|可求.

解答 解:∵直線(xiàn)ax+6y+c=0(a、b∈R)與圓x2+y2=1交于不同的兩點(diǎn)A、B,
∴$|\overrightarrow{OA}|=|\overrightarrow{OB}|=1$,
則由$\overrightarrow{OA}•\overrightarrow{OB}=|{\overrightarrow{OA}}||{\overrightarrow{OB}}|cos<\overrightarrow{OA},\overrightarrow{OB}>=-\frac{1}{2}⇒cos<\overrightarrow{OA},\overrightarrow{OB}>=-\frac{1}{2}$.
∴∠AOB=120°,
則|AB|=2|AC|=2×$\frac{\sqrt{3}}{2}=\sqrt{3}$.
故選D.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知△ABC三個(gè)角A,B,C所對(duì)的邊分別為a,b,c,且a,b,c成等比數(shù)列.
(Ⅰ)求角B的取值范圍;
(Ⅱ)設(shè)f(x)=3sinx+4cosx,求f(B)的最大值及f(B)取得最大值時(shí)tanB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.圓心坐標(biāo)為(-1,-1)且過(guò)原點(diǎn)的圓的方程是( 。
A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直線(xiàn)4x+y=4,mx+y=0和2x-3my=4不能構(gòu)成三角形,則m的個(gè)數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)計(jì)算;log3$\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$;  
(2)已知a>0,且a-a-1=3,求值:a2-a-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$|\overrightarrow b|=5$,且$\overrightarrow a•\overrightarrow b=12$,則$\overrightarrow a$在$\overrightarrow b$方向上的投影為( 。
A.$\frac{12}{5}$B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列命題中真命題的個(gè)數(shù)為( 。
①面積相等的三角形是全等三角形;
②若xy=0,則|x|+|y|=0;
③若a>b,則a+c>b+c;
④矩形的對(duì)角線(xiàn)互相垂直.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.給出以下命題:
①若f′(x0)=0,則f(x0)為f(x)的極值.
②若f(x)的極大值為f(x1),f(x)的極小值為f(x2),則f(x1)>f(x2);
③△ABC中,若sin2A+sin2B<sin2C,則△ABC是鈍角三角形;
④若函數(shù)f(x)=cos2x+asinx在區(qū)間$(\frac{π}{4},\frac{π}{2})$是減函數(shù),則a∈$({-∞,2\sqrt{2}}]$
⑤設(shè)△ABC的三邊長(zhǎng)分別為a、b、c,△ABC的面積為S,內(nèi)切圓半徑為r,則r=$\frac{2S}{a+b+c}$;類(lèi)比這個(gè)結(jié)論可知:四面體S-ABC的四個(gè)面的面積分別為S1、S2、S3、S4,內(nèi)切球的半徑為R,四面體P-ABC的體積為V,則R=$\frac{3V}{S_1+S_2+S_3+S_4}$
其中正確命題的序號(hào)為③④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c且$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=-sin2C.
(1)求角C的大小;
(2)若c=2$\sqrt{3}$,求△ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案