13.直線4x+y=4,mx+y=0和2x-3my=4不能構(gòu)成三角形,則m的個(gè)數(shù)為(  )
A.2B.3C.4D.5

分析 對(duì)三條直線的位置關(guān)系分類討論:其中兩條平行或三條相交于同一個(gè)點(diǎn),即可得出.

解答 解:當(dāng)直線l1:4x+y-4=0 平行于 l2:mx+y=0時(shí),m=4.
②當(dāng)直線l1:4x+y-4=0 平行于 l3:2x-3my-4=0時(shí),m=-$\frac{1}{6}$,
③當(dāng)l2:mx+y=0 平行于 l3:2x-3my-4=0時(shí),-m=$\frac{2}{3m}$,m 無解.
④當(dāng)三條直線經(jīng)過同一個(gè)點(diǎn)時(shí),把直線l1 與l2的交點(diǎn)$(\frac{4}{4-m},\frac{-4m}{4-m})$代入l3:2x-3my-4=0得 $\frac{8}{4-m}+\frac{12{m}^{2}}{4-m}$-4=0,解得m=-1或$\frac{2}{3}$,
綜上,滿足條件的m為4、或-$\frac{1}{6}$,或-1或$\frac{2}{3}$,共4個(gè).
故選:C.

點(diǎn)評(píng) 本題考查了直線的位置關(guān)系、相互平行的充要條件或相交,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中正確的命題個(gè)數(shù)是( 。
①若直線a∥b,b∥c,則a∥c;    
②若直線a∥b,b?α,則a∥α
③若直線a⊥α,直線b?α,則a⊥b
④若直線a⊥m,b⊥n,m與n為平面α內(nèi)兩相交直線,則a⊥α
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=4|$\overrightarrow{a}$|,且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$+$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),$f(x)=1-{(\frac{1}{2})^x}$,則不等式$f(x)<\frac{1}{2}$的解集是( 。
A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|4≤x≤16},B={x|2<x<m+1}.
(1)當(dāng)m=4時(shí),求(∁RA)∩B;
(2)若B⊆(∁RA),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式|x2-2|<1的解集為( 。
A.$(-\sqrt{3},1)∪(\sqrt{3},+∞)$B.$(-∞,-1)∪(\sqrt{3},+∞)$C.$(-∞,-\sqrt{3})∪(\sqrt{3},+∞)$D.$(-\sqrt{3},-1)∪(1,\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.直線ax+6y+c=0(a、b∈R)與圓x2+y2=1交于不同的兩點(diǎn)A、B,若$\overrightarrow{OA}•\overrightarrow{OB}$=-$\frac{1}{2}$,其中0為坐標(biāo)原點(diǎn),則|AB|=( 。
A.$\frac{{\sqrt{3}}}{2}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R且a<0).若函數(shù)f(x)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率是-3.
(Ⅰ)求a,b的值;     
(Ⅱ)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知x、y之間的一組數(shù)據(jù):
x0123
y2345
(1)求y對(duì)x的線性回歸方程;           
(2)預(yù)測(cè)當(dāng)x=50.5時(shí),y的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案