分析 (1)令f′(x)=0,因為△>0,所以方程存在兩個不等實根,根據(jù)條件進(jìn)一步可得方程有兩個不等的正根,從而得到函數(shù)f(x)存在單調(diào)遞減區(qū)間;
(2)先求出函數(shù)y=f(x)在點P(1,1)處的切線l的方程,若切線l與曲線C只有一個公共點,則只需方程f(x)=-x+2有且只有一個實根即可.
解答 (1)證明:令f′(x)=0,得mx2-(m+2)x+1=0. (*)
因為△=(m+2)2-4m=m2+4>0,所以方程(*)存在兩個不等實根,記為a,b(a<b).
因為m≥1,所以a+b=$\frac{m+2}{m}$>0,ab=$\frac{1}{m}$>0,
所以a>0,b>0,即方程(*)有兩個不等的正根,因此f′(x)≤0的解為[a,b].
故函數(shù)f(x)存在單調(diào)遞減區(qū)間;
(2)解:因為f′(1)=-1,所以曲線C:y=f(x)在點P(1,1)處的切線l為y=-x+2.
若切線l與曲線C只有一個公共點,則方程$\frac{1}{2}$m(x-1)2-2x+3+lnx=-x+2有且只有一個實根.
顯然x=1是該方程的一個根.
令g(x)=$\frac{1}{2}$m(x-1)2-x+1+lnx,則g′(x)=$\frac{m(x-1)(x-\frac{1}{m})}{x}$.
當(dāng)m=1時,有g(shù)′(x)≥0恒成立,所以g(x)在(0,+∞)上單調(diào)遞增,
所以x=1是方程的唯一解,m=1符合題意.
當(dāng)m>1時,令g′(x)=0,得x1=1,x2=$\frac{1}{m}$,則x2∈(0,1),易得g(x)在x1處取到極小值,在x2處取到極大值.
所以g(x2)>g(x1)=0,又當(dāng)x→0時,g(x)→-∞,所以函數(shù)g(x)在(0,$\frac{1}{m}$)內(nèi)也有一個解,即當(dāng)m>1時,不合題意.
綜上,存在實數(shù)m,當(dāng)m=1時,曲線C:y=f(x)在點P(1,1)處的切線l與C有且只有一個公共點.
點評 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及導(dǎo)數(shù)的幾何意義,同時考查了轉(zhuǎn)化的思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,2) | C. | (-1,2) | D. | (1+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1丈3尺 | B. | 5丈4尺 | C. | 9丈2尺 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 512 | B. | 256 | C. | 255 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個 | B. | 4個 | C. | 8個 | D. | 16個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2}{5}+\frac{4}{5}$i | B. | $\frac{2}{5}+\frac{4}{5}$i | C. | $\frac{2}{5}-\frac{4}{5}$i | D. | -$\frac{2}{5}-\frac{4}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}-1$ | B. | $-\frac{{\sqrt{3}}}{2}+1$ | C. | $\frac{{\sqrt{3}}}{2}-1$ | D. | $\frac{{\sqrt{3}}}{2}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com