18.在復(fù)平面上,已知復(fù)數(shù)z1與z2的對應(yīng)點關(guān)于直線y=x對稱,且滿足z1z2=9i,則|z1|=3.

分析 設(shè)z1=x+yi(x,y∈R),由已知條件可得z2=y+xi,利用復(fù)數(shù)的乘法運算求解即可得答案.

解答 解:設(shè)z1=x+yi(x,y∈R),又復(fù)數(shù)z1與z2的對應(yīng)點關(guān)于直線y=x對稱,則z2=y+xi.
∴z1z2=(x+yi)(y+xi)=xy+x2i+y2i+xyi2=(x2+y2)i=9i.
∴x2+y2=9.
則|z1|=$\sqrt{{x}^{2}+{y}^{2}}=3$.
故答案為:3.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知(1-2x)2016=a0+a1(x-2)+a2(x-2)2+…+a2015(x-2)2015+a2016(x-2)2016(x∈R),則a1-2a2+3a3-4a4+…+2015a2015-2016a2016=( 。
A.1008B.2016C.4032D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,若A=135°,B=30°,a=$\sqrt{2}$,則b等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.甲、乙同時炮擊一架敵機(jī),已知甲擊中敵機(jī)的概率為0.3,乙擊中敵機(jī)的概率為0.5,敵機(jī)被擊中的概率為0.65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=lnx+$\frac{1}{x}$-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和最值;
(2)若正項數(shù)列{an}的前n項和為Sn,滿足2Sn=an2+an,若不等式${e^{k({a_n}-1)}}$≥an對任意n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.角α頂點在坐標(biāo)原點O,始邊與x軸的非負(fù)半軸重合,tanα=-2,點P在α的終邊上,點Q(-3,-4),則$\overrightarrow{OP}$與$\overrightarrow{OQ}$夾角余弦值為$\frac{{\sqrt{5}}}{5}$或$-\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.經(jīng)過雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F作該雙曲線一條漸近線的垂線與兩條漸近線相較于M,N兩點,若O為坐標(biāo)原點,△OMN的面積是$\frac{2}{3}$a2,則該雙曲線的離心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集U=R,集合A=$\left\{{x\left|{y=\sqrt{2x-{x^2}}}\right.}\right\}$,B={y|y=2x,x∈R},則(∁UA)∩B=(  )
A.(2,+∞)B.(0,1]C.(1,2]D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(α)=($\frac{cos\frac{α}{2}}{sin\frac{α}{2}}$-tan$\frac{α}{2}$)•$\frac{1-cos2α}{2sinα}$.求f($\frac{π}{4}$)的值.

查看答案和解析>>

同步練習(xí)冊答案