10.經(jīng)過(guò)雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)為F作該雙曲線一條漸近線的垂線與兩條漸近線相較于M,N兩點(diǎn),若O為坐標(biāo)原點(diǎn),△OMN的面積是$\frac{2}{3}$a2,則該雙曲線的離心率是$\frac{\sqrt{5}}{2}$.

分析 求出雙曲線的漸近線方程,設(shè)兩條漸近線的夾角為θ,由兩直線的夾角公式,可得tanθ=tan∠MON,求出F到漸近線y=$\frac{a}$x的距離為b,即有|ON|=a,△OMN的面積可以表示為$\frac{1}{2}$•a•atanθ,結(jié)合條件可得a,b的關(guān)系,再由離心率公式即可計(jì)算得到.

解答 解:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)的漸近線方程為y=±$\frac{a}$x,
設(shè)兩條漸近線的夾角為θ,
則|tanθ|=tan∠MON=$\frac{\frac{a}-(-\frac{a})}{1+\frac{a}•(-\frac{a})}$=$\frac{2ab}{{a}^{2}-^{2}}$,
設(shè)FN⊥ON,則F到漸近線y=$\frac{a}$x的距離為d=$\frac{|bc|}{\sqrt{{a}^{2}+^{2}}}$=b,
即有|ON|=$\sqrt{{c}^{2}-^{2}}$=a,
則△OMN的面積可以表示為$\frac{1}{2}$•a•a|tanθ|=$\frac{{a}^{3}b}{{a}^{2}-^{2}}$=$\frac{2{a}^{2}}{3}$,
解得a=2b,
則e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}+^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\frac{\sqrt{5}}{2}$.
故答案為:$\frac{\sqrt{5}}{2}$.

點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),主要考查離心率的求法,同時(shí)考查兩直線的夾角公式和三角形的面積公式,結(jié)合著較大的運(yùn)算量,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)sinα≠0,求證:cosα•cos2α•cos22α…cos2nα=$\frac{sin{2}^{n+1}α}{{2}^{n+1}sinα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)是R上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=-f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log8(x+1),則f(-2013)+f(2014)的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在復(fù)平面上,已知復(fù)數(shù)z1與z2的對(duì)應(yīng)點(diǎn)關(guān)于直線y=x對(duì)稱,且滿足z1z2=9i,則|z1|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.今年年初,我國(guó)多個(gè)地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,對(duì)我們的身體健康產(chǎn)生了巨大的威脅,私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此很多城市實(shí)施了機(jī)動(dòng)車尾號(hào)限行,某報(bào)社為了解市區(qū)公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)調(diào)查了50人,將調(diào)查情況進(jìn)行整理后制成表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
調(diào)查人數(shù)510151055
贊成人數(shù)469634
(1)請(qǐng)?jiān)趫D中完成被調(diào)查人員年齡的頻率分布直方圖;

(2)若從年齡在[55,65),[65,75]的被調(diào)查者中各隨機(jī)選取一人進(jìn)行追蹤調(diào)查,求這兩人都贊成“車輛限行”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)x,y∈R,向量$\overrightarrow a$=(2,-4),$\overrightarrow b$=(x,1),$\overrightarrow c$=(1,y),且$\overrightarrow a$⊥$\overrightarrow b$,$\overrightarrow a$∥$\overrightarrow c$,則|$\overrightarrow b$+$\overrightarrow c$|=( 。
A.$\sqrt{5}$B.$\sqrt{10}$C.$2\sqrt{5}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點(diǎn)為F1(-3$\sqrt{2}$,0),且離心率為3,則雙曲線C的標(biāo)準(zhǔn)方程為$\frac{x^2}{2}-\frac{y^2}{16}=1$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.過(guò)P(a,b)向圓(x-2)2+(y-3)2=1引切線PT,T為切點(diǎn),若|PT|=|PO|(O為坐標(biāo)原點(diǎn)),則切線|PT|的最小值為$\frac{{6\sqrt{13}}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.?dāng)?shù)列{an}的通項(xiàng)公式an=n•sin$\frac{nπ}{2}$+1,前n項(xiàng)和為Sn,則S2015=( 。
A.504B.1006C.1007D.1008

查看答案和解析>>

同步練習(xí)冊(cè)答案