【題目】下列說法正確的是()
A. “,若,則且”是真命題
B. 在同一坐標(biāo)系中,函數(shù)與的圖象關(guān)于軸對稱.
C. 命題“,使得”的否定是“,都有”
D. ,“”是“”的充分不必要條件
【答案】B
【解析】
由逆否命題的真假可判斷A,,判斷點(diǎn)在函數(shù)圖象上時,是否有在函數(shù)的圖象上可判斷B,由特稱命題的否定判斷C,解不等式可知兩條件的關(guān)系.
對于A,判斷命題“,若,則且”是否為真命題,可以通過判斷其逆否命題:“,若或,則”為假命題,知原命題為假命題;
對于B,在同一坐標(biāo)系中,若點(diǎn)在函數(shù)圖象上,則有在函數(shù)的圖象上,所以函數(shù)與的圖象關(guān)于軸對稱正確;
對于C,由于特稱命題的否定為全稱命題,所以命題“,使得”的否定是“,都有”,所以C不正確;
對于D,由,可得或,所以“”是“”的必要不充分條件,所以D不正確.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:方程有兩個不相等的實(shí)數(shù)根;命題:不等式的解集為.若或為真,為假,求實(shí)數(shù)的取值范圍.
【答案】或
【解析】
根據(jù)“或為真,為假”判斷出“為真,為假”,利用判別式列不等式分別求得為假、為真時的取值范圍,再取兩者的交集求得實(shí)數(shù)的取值范圍.
因?yàn)?/span>或為真,為假,所以為真,為假
為假,,即:,∴或 ,
為真,,即:,∴或,
所以取交集為或 .
【點(diǎn)睛】
本小題主要考查含有簡單邏輯聯(lián)結(jié)詞命題的真假性,考查一元二次方程根與判別式的關(guān)系,考查一元二次不等式解集為與判別式的關(guān)系,屬于中檔題.
【題型】解答題
【結(jié)束】
18
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)為,且離心率.
(1)求雙曲線的方程;
(2)求以點(diǎn)為中點(diǎn)的弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間.
(2)若方程上有解,求實(shí)數(shù)m的取值范圍.
(3)設(shè),已知區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有100個零點(diǎn),在所有滿足上述條件的[a,b]中求b﹣a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖中有一個信號源和五個接收器,接收器與信號源在同一個串聯(lián)線路中時,就能接收到信號,否則就不能接收到信號。若將圖中左端的六個接線點(diǎn)隨機(jī)地平均分成三組,將右端的六個接線點(diǎn)也隨機(jī)地平均分成三組,再把所有六組中每組的兩個接線點(diǎn)用導(dǎo)線連接,則這五個接收器不能同時接收到信號的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)寫出下列兩組誘導(dǎo)公式:
①關(guān)于與的誘導(dǎo)公式;
②關(guān)于與的誘導(dǎo)公式.
(2)從上述①②兩組誘導(dǎo)公式中任選一組,用任意角的三角函數(shù)定義給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是()
A. “,若,則且”是真命題
B. 在同一坐標(biāo)系中,函數(shù)與的圖象關(guān)于軸對稱.
C. 命題“,使得”的否定是“,都有”
D. ,“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“珠算之父”程大為是我國明代偉大數(shù)學(xué)家,他的應(yīng)用數(shù)學(xué)巨著《算法統(tǒng)綜》的問世,標(biāo)志著我國的算法由籌算到珠算轉(zhuǎn)變的完成,程大位在《算法統(tǒng)綜》中常以詩歌的形式呈現(xiàn)數(shù)學(xué)問題,其中有一首“竹筒容米”問題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)三升九,上稍四節(jié)儲三升,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明”((注)三升九:升,次第盛;盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識求得中間兩節(jié)的容積為( )
A.升B.升C.升D.升
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若曲線在處的切線與直線垂直,求實(shí)數(shù)的值;
(2)設(shè),若對任意兩個不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com