【題目】給出下列四個命題:
(1函數f(x)=loga(2x﹣1)﹣1的圖象過定點(1,0);
(2化簡2 +lg5lg2+(lg2)2﹣lg2的結果為25;
(3若loga <1,則a的取值范圍是(1,+∞);
(4若2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),則x+y<0.
其中所有正確命題的序號是
【答案】(2)(4)
【解析】解:(1)函數f(x)=loga(2x﹣1)﹣1的圖象過定點(1,﹣1),故(1)錯誤;(2)2 +lg5lg2+(lg2)2﹣lg2=25+lg2(lg5+lg2)﹣lg2=25+lg2﹣lg2=25,故(2)正確;(3)若loga <1,則a的取值范圍是(0, )∪(1,+∞),故(3)錯誤;(4)構造函數F(t)=2﹣t﹣lnt,t∈(0,+∞),
顯然,F(xiàn)(t)為定義域上的減函數,
因為x>0,y<0,所以,﹣y>0,
故F(x)=2﹣x﹣lnx,F(xiàn)(﹣y)=2y﹣ln(﹣y),
由①式得,F(xiàn)(x)>F(﹣y),
且F(t)為定義域上的減函數,
因此,x<﹣y,
即x+y<0,故(4)正確;
所以答案是:(2)(4)
【考點精析】掌握命題的真假判斷與應用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
科目:高中數學 來源: 題型:
【題目】若函數f(x)=ax+ka﹣x(a>0且a≠1)在R上既是奇函數又是增函數,則函數g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知p:實數x滿足x2﹣4ax+3a2<0,其中a>0; q:實數x滿足2<x≤3.
(1)若a=1,且p∧q為真,求實數x的取值范圍;
(2)若p是q的必要不充分條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公比不為1的等比數列{an}的前5項積為243,且2a3為3a2和a4的等差中項.
(1)求數列{an}的通項公式an;
(2)若數列{bn}滿足bn=bn﹣1log3an+2(n≥2且n∈N*),且b1=1,求數列 的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若c-b=2bcosA.
(1)求證:A=2B;
(2)若cosB=,c=5,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log2(16x+k)﹣2x (k∈R)是偶函數.
(1)求k;
(2)若不等式m﹣1≤f(x)≤2m+log217在x∈[﹣1, ]上恒成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com