3.現(xiàn)要給一長、寬、高分別為3、2、1的長方體工藝品各面涂色,有紅、橙、黃、藍(lán)、綠五種顏色的涂料可供選擇,要求相鄰的面不能涂相同的顏色,且橙色跟黃色二選一,紅色要涂兩個(gè)面,則不同的涂色方案種數(shù)有( 。
A.48種B.72種C.96種D.108種

分析 分兩類,若藍(lán)綠選一個(gè),由橙黃二選一,共三種顏色涂6個(gè)面,若藍(lán)綠選兩個(gè),由橙黃二選一,故共有4種顏色,紅色只能涂相對的面,根據(jù)分類計(jì)數(shù)原理可得

解答 解:若藍(lán)綠選一個(gè),由橙黃二選一,共三種顏色涂6個(gè)面,只能每一種顏色只能涂相對的面,
故有C21C21A33=24種,
若藍(lán)綠選兩個(gè),由橙黃二選一,故共有4種顏色,紅色只能涂相對的面,還4個(gè)面,
故有2×(A33+C31C21)C31=72種,
根據(jù)分類計(jì)數(shù)原理,共有24+72=96種,
故選:C

點(diǎn)評 本題考查了分類計(jì)數(shù)原理,關(guān)鍵是分類,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+1,g(x)=2alnx+1(a∈R)
(1)求函數(shù)h(x)=f(x)-g(x)的極值;
(2)當(dāng)a=e時(shí),是否存在實(shí)數(shù)k,m,使得不等式g(x)≤kx+m≤f(x)恒成立?若存在,請求實(shí)數(shù)k,m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(x)=cos2x+asinx-$\frac{a}{4}$-$\frac{1}{2}$(0≤x≤$\frac{π}{2}$),其中a>0.
(1)用a表示f(x)的最大值M(a);
(2)當(dāng)M(a)=2時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=4ex(x+1)-k($\frac{2}{3}$x3+2x2),若x=-2是函數(shù)f(x)的唯一一個(gè)極值點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(-2e,e]B.[0,2e]C.(-∞,-e)∪[e,2e]D.(-∞,-e)∪[0,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3x+5,(x<1)}\\{lo{g}_{\frac{1}{2}}x-1,(x≥1)}\end{array}\right.$,則f(f(2$\sqrt{2}$))=-$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知圓C:x2+y2-2x+a=0,設(shè)AB為圓C的一條直徑,$\overrightarrow{OA}•\overrightarrow{OB}$=-6(O為坐標(biāo)原點(diǎn)),則a的值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某班主任對班級90名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,結(jié)合數(shù)據(jù)建立了下列列聯(lián)表:
認(rèn)為作業(yè)多認(rèn)為作業(yè)少總計(jì)
喜歡玩電腦游戲103545
不喜歡玩玩電腦游戲73845
總計(jì)177390
利用獨(dú)立性檢驗(yàn)估計(jì),你認(rèn)為推斷喜歡電腦游戲與認(rèn)為作業(yè)多少有關(guān)系錯(cuò)誤的概率介于( 。
(觀測值表如下)
P(K2≥k00.500.400.250.15
k00.4550.7081.3232.072
A.0.15~0.25B.0.4~0.5C.0.5~0.6D.0.75~0.85

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若曲線$C:y=cosx({x∈({0,\frac{π}{2}}]})$上一點(diǎn)P(x0,cosx0)處的切線與x軸,y軸分別交于A,B兩點(diǎn),則當(dāng)$OA+\frac{1}{OB}$取得最小值時(shí),OB的值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{g(x),x<0}\\{a-lo{g}_{2}(x+2),x≥0}\end{array}\right.$是奇函數(shù),則f(x)>-1的解集為( 。
A.(-2,0]∪(2,+∞)B.(-2,+∞)C.(-∞,-2)∪(0,2)D.(-∞,2)

查看答案和解析>>

同步練習(xí)冊答案