11.已知函數(shù)f(x)=4ex(x+1)-k($\frac{2}{3}$x3+2x2),若x=-2是函數(shù)f(x)的唯一一個極值點,則實數(shù)k的取值范圍是(  )
A.(-2e,e]B.[0,2e]C.(-∞,-e)∪[e,2e]D.(-∞,-e)∪[0,e]

分析 求導(dǎo),f′(x)=4(x+2)(ex-$\frac{k}{2}$x),由x=-2是函數(shù)f(x)的唯一一個極值點,則g(x)=ex-$\frac{k}{2}$x≥0,符合題意,根據(jù)導(dǎo)數(shù)的幾何意義可得0≤$\frac{k}{2}$≤e,即可求得實數(shù)k的取值范圍.

解答 解:由f′(x)=4ex(x+1)+4ex-k(2x2+4x)
=4ex(x+2)-2kx(x+2)=4(x+2)(ex-$\frac{k}{2}$x),
由x=-2是函數(shù)f(x)的唯一一個極值點,
畫出y=ex,y=$\frac{k}{2}$x圖象,由g(x)=ex-$\frac{k}{2}$x≥0,符合題意,
則y=ex,過原點的切線斜率為e,只需要0≤$\frac{k}{2}$≤e,
∴0≤k≤2e,
數(shù)k的取值范圍[0,2e],
故選B.

點評 本題考查導(dǎo)數(shù)的綜合應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性及極值的關(guān)系,導(dǎo)數(shù)的幾何意義,考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知角φ的終邊在射線$y=\sqrt{3}x(x≤0)$上,函數(shù)f(x)=cos(ωx+φ)(ω>0)圖象的相鄰兩條對稱軸之間的距離等于$\frac{π}{3}$,則$f(\frac{π}{6})$=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=4x+a•2x+a+1在R上存在零點,則實數(shù)a的取值范圍為(-∞,2-2$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線$\left\{\begin{array}{l}x=1+tcosα\\ y=-2+tsinα\end{array}$(t為參數(shù),0≤a<π)必過點( 。
A.(1,-2)B.(-1,2)C.(-2,1)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|log2(x+1)<2},B={y|y=$\sqrt{16-{2}^{x}}$},則(∁RA)∩B=( 。
A.(0,3)B.[0,4]C.[3,4)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若一個底面是等腰直角三角形的直三棱柱的正視圖如圖所示,其頂點都在一個球面上,則該球的表面積為(  )
A.6π或5πB.3π或5πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.現(xiàn)要給一長、寬、高分別為3、2、1的長方體工藝品各面涂色,有紅、橙、黃、藍、綠五種顏色的涂料可供選擇,要求相鄰的面不能涂相同的顏色,且橙色跟黃色二選一,紅色要涂兩個面,則不同的涂色方案種數(shù)有( 。
A.48種B.72種C.96種D.108種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知在△ABC中,b2+a2-c2<0,且b>a,sinA+$\sqrt{2}$cosA=$\frac{5}{3}$,則tanA=(  )
A.$\frac{2\sqrt{2}}{3}$或$\frac{4\sqrt{2}}{9}$B.$\frac{\sqrt{2}}{4}$C.$\frac{7\sqrt{2}}{8}$D.$\frac{\sqrt{2}}{4}$或$\frac{7\sqrt{2}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的 部分圖象如圖所示,f($\frac{π}{2}$)=-$\frac{2}{3}$,則f($\frac{π}{3}$)等于( 。
A.-$\frac{2}{3}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案