6.已知集合A={x|0<4-x<2},B={x|3x-1≤9},則A∩B=(  )
A.(2,3)B.(2,4)C.(2,3]D.[2,3]

分析 求出A,B中不等式的解集確定出A,B,找出A與B的交集即可.

解答 解:由A中不等式解得:2<x<4,即A=(2,4),
由3x-1≤9=32,解得x≤3,即B=(-∞,3]
∴A∩B=(2,3].
故選:C.

點評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在Rt△ABC中,∠C=90°,AC=4,則$\overrightarrow{AB}$•$\overrightarrow{CA}$等于( 。
A.-16B.-8C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若橢圓$\frac{x^2}{36}+\frac{y^2}{16}=1$上一點P與橢圓的兩個焦點F1、F2的連線互相垂直,則△PF1F2的面積為(  )
A.36B.16C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a=2,$b={125^{\frac{1}{6}}}$,c=log47,則下列不等式關(guān)系成立的是( 。
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則$\frac{y-1}{x}$的取值范圍為( 。
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1]C.[0,2]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知變量x,y滿足$\left\{\begin{array}{l}2x-y≤0\\ x-2y+3≥0\\ x≥0\end{array}\right.$,則z=8x•2y的最大值為( 。
A.33B.32C.35D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某班級50名學(xué)生的考試分?jǐn)?shù)x分布在區(qū)間[50,100)內(nèi),設(shè)考試分?jǐn)?shù)x的分布頻率是f(x),且$f(x)=\left\{\begin{array}{l}\frac{n}{10}-0.4,10n≤x<10({n+1}),n=5,6,7\\-\frac{n}{5}+b,10n≤x<10({n+1}),n=8,9.\end{array}\right.$
(1)求b的值;
(2)并估計班級的考試平均分?jǐn)?shù);
(3)考試成績采用“5分制”,規(guī)定:考試分?jǐn)?shù)在[50,60)內(nèi)的成績記為1分,考試分?jǐn)?shù)在[60,70)內(nèi)的成績記為2分,考試分?jǐn)?shù)在[70,80)內(nèi)的成績記為3分,考試分?jǐn)?shù)在[80,90)內(nèi)的成績記為4分,考試分?jǐn)?shù)在[90,100)內(nèi)的成績記為5分,在50名學(xué)生中用分層抽樣的方法,從成績?yōu)?分,2分,3分的學(xué)生中隨機(jī)抽取6人,再從這6人中抽出2人,記這2人的成績之和為4的概率(將頻率視為概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.與復(fù)數(shù)z的實部相等,虛部互為相反數(shù)的復(fù)數(shù)叫做z的共軛復(fù)數(shù),并記作$\overline z$,若z=i(3-2i)(其中i為復(fù)數(shù)單位),則$\overline z$=(  )
A.3-2iB.3+2iC.2+3iD.2-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,點P在平面上從點A出發(fā),依次按照點B、C、D、E、F、A的順序運(yùn)動,其軌跡為兩段半徑為1的圓弧和四條長度為1,且與坐標(biāo)軸平行的線段.設(shè)從運(yùn)動開始射線OA旋轉(zhuǎn)到射線OP時的旋轉(zhuǎn)角為α.若點P的縱坐標(biāo)y關(guān)于α的函數(shù)為f(α),則函數(shù)f(α)的圖象( 。
A.關(guān)于直線$α=\frac{π}{4}$成軸對稱,關(guān)于坐標(biāo)原點成中心對稱
B.關(guān)于直線$α=\frac{3π}{4}$成軸對稱,沒有對稱中心
C.沒有對稱軸,關(guān)于點(π,0)成中心對稱
D.既沒有對稱軸,也沒有對稱中心.

查看答案和解析>>

同步練習(xí)冊答案