分析 (1)由極坐標(biāo)化為標(biāo)準(zhǔn)方程,再寫(xiě)出參數(shù)方程即可,
(2)可設(shè)點(diǎn)P的坐標(biāo)為(1+2cosθ,1+2sinθ),表示出矩形OAPB的面積為S,再設(shè)t=sinθ+cosθ,根據(jù)二次函數(shù)的性質(zhì)即可求出答案.
解答 解:(1)由$ρ=2(sinθ+cosθ+\frac{1}{ρ})$得ρ2=2(ρsinθ+ρcosθ+1),所以x2+y2=2x+2y+2,即(x-1)2+(y-1)2=4.
故曲線C的參數(shù)方程$\left\{\begin{array}{l}x=1+2cosθ\\ y=1+2sinθ\end{array}\right.$(θ為參數(shù)).
(2)由(1)可設(shè)點(diǎn)P的坐標(biāo)為(1+2cosθ,1+2sinθ),θ∈[0,2π),
則矩形OAPB的面積為S=|(1+2cosθ)(1+2sinθ)|=|1+2sinθ+2cosθ+4sinθcosθ)|
令$t=sinθ+cosθ=\sqrt{2}sin(θ+\frac{π}{4})∈[-\sqrt{2},\sqrt{2}]$,t2=1+2sinθcosθ,$S=|1+2t+2{t^2}-2|=|2{(t+\frac{1}{2})^2}-\frac{3}{2}|$,
故當(dāng)$t=\sqrt{2}$時(shí),${S_{max}}=3+2\sqrt{2}$.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程、參數(shù)方程,以及三角函數(shù)和二次函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 15 | C. | 14 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{4}{3}$ | C. | $\frac{5}{4}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-16] | B. | (-∞,-32] | C. | [-32,-16] | D. | 以上答案都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com