A. | zmin=2,zmax=3 | B. | zmin=2,無最大值 | ||
C. | zmax=3,無最小值 | D. | 既無最大值,也無最小值 |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求目標(biāo)函數(shù)z=x+y的最值.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點(diǎn)C時,
直線y=-x+z的截距最小,此時z最�。�
由{2x+y=4x−2y=2,解得{x=2y=0,即C(2,0),
代入目標(biāo)函數(shù)z=x+y得z=2+0=2.
即目標(biāo)函數(shù)z=x+y的最小值為2.
無最大值.
故選:B.
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 56 | B. | 49 | C. | 12 | D. | 59 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
男生 | 女生 | 總計 | |
收看 | 40 | ||
不收看 | 30 | ||
總計 | 60 | 110 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 23 | B. | -23 | C. | 32 | D. | -32 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com