15.已知P為拋物線x2=4y上一點(diǎn),F(xiàn)為其焦點(diǎn),以P為圓心,PF為半徑的圓與直線x=4相切,則P的坐標(biāo)(2,1)或(-6,9).

分析 設(shè)P(x,y),則由題意,y+1=4-x,可得y=3-x,代入x2=4y,可得x2+4x-12=0,求出x,可得y,即可求出點(diǎn)P的坐標(biāo).

解答 解:設(shè)P(x,y),則由題意,y+1=4-x,
∴y=3-x,
代入x2=4y,可得x2+4x-12=0,
∴x=2或-6,
∴y=1或9,
∴P(2,1)或(-6,9).
故答案為:(2,1)或(-6,9).

點(diǎn)評 本題考查拋物線的方程與性質(zhì),考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,BC=7,cosA=$\frac{1}{5}$,cosC=$\frac{5}{7}$,若動點(diǎn)P滿足$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+(2-2λ)$\overrightarrow{AC}$(λ∈R),則點(diǎn)P的軌跡與直線AB、AC所圍成的封閉圖形的面積為(  )
A.2$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)f(x)=3x+3x-8,用二分法求方程3x+3x-8在x∈(1,2)內(nèi)方程的近似解,則方程的根落在區(qū)間(參考數(shù)據(jù)31.25≈3.95)( 。
A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義在R上的奇函數(shù)f(x),當(dāng)x∈(-∞,0)時,f(x)=-x2+mx-1.
(1)求f(x)的解析式;
(2)若方程f(x)=0有五個不相等的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓過點(diǎn)(0,3)且與雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{7}$=1有相同的焦點(diǎn),則橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{7}+\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{7}$=1C.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{7}$=1D.$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)在其定義域內(nèi)即是奇函數(shù)又是單調(diào)遞增函數(shù)的是( 。
A.y=-$\frac{1}{x}$B.y=-log2xC.y=3xD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow$=(1,cosx)
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求tanx的值
(2)若f(x)=$\overrightarrow{a}$•$\overrightarrow$,求函數(shù)f(x)的最小正周期以及最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=3sin(2x-$\frac{π}{3}$)的圖象,可看作是把函數(shù)y=3sin2x的圖象作以下哪個平移得到( 。
A.向左平移$\frac{π}{3}$B.向右平移$\frac{π}{3}$C.向左平移$\frac{π}{6}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,將1,2,3,4任意排成2行2列的田字形數(shù)表.
(1)求對角線上數(shù)字之和相等的概率;
(2)設(shè)每行中的任意兩個數(shù)a,b(a>b)的比值為$\frac{a}$,記這兩個比值中的最小值為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案