1.如圖,正三棱柱ABC-A1B1C1(底面是正三角形,側(cè)棱垂直底面)的各條棱長(zhǎng)均相等,D為AA1的中點(diǎn).M、N分別是BB1、CC1上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足BM=C1N.
當(dāng)M、N運(yùn)動(dòng)時(shí),下列結(jié)論中正確的是①②④(填上所有正確命題的序號(hào)).
①平面DMN⊥平面BCC1B1;
②三棱錐A1-DMN的體積為定值;
③△DMN可能為直角三角形;
④平面DMN與平面ABC所成的銳二面角范圍為$(0,\frac{π}{4}]$.

分析 由BM=C1N,得線段MN必過(guò)正方形BCC1B1的中心O,由DO⊥平面BCC1B1,可得平面DMN⊥平面BCC1B1;
由△A1DM的面積不變,N到平面A1DM的距離不變,得到三棱錐A1-DMN的體積為定值;
利用反證法思想說(shuō)明△DMN不可能為直角三角形;
平面DMN與平面ABC平行時(shí)所成角為0,當(dāng)M與B重合,N與C1重合時(shí),平面DMN與平面ABC所成的銳二面角最大.

解答 解:如圖,

當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),若滿足BM=C1N,則線段MN必過(guò)正方形BCC1B1的中心O,而DO⊥平面BCC1B1,∴平面DMN⊥平面BCC1B1,①正確;
當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),△A1DM的面積不變,N到平面A1DM的距離不變,∴棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,②正確;
若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時(shí)DM,DN的長(zhǎng)大于BB1,∴△DMN不可能為直角三角形,③錯(cuò)誤;
當(dāng)M、N分別為BB1,CC1中點(diǎn)時(shí),平面DMN與平面ABC所成的角為0,當(dāng)M與B重合,N與C1重合時(shí),平面DMN與平面ABC所成的銳二面角最大,為∠C1BC,等于$\frac{π}{4}$.
∴平面DMN與平面ABC所成的銳二面角范圍為(0,$\frac{π}{4}$],④正確,
∴正確的是①②④.
故答案為:①②④.

點(diǎn)評(píng) 本題考查了命題的真假判斷與應(yīng)用,考查了棱柱的結(jié)構(gòu)特征,考查了空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知x,y滿足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥\frac{1}{2}}\end{array}\right.$,則z=2x-y的最大值等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某小組為了研究中學(xué)生的視覺(jué)和空間能力是否與性別有關(guān),從學(xué)校各年級(jí)中按分層抽樣的方法抽取50名同學(xué)(男生30人,女生20人).給每位同學(xué)難度一致的幾何題和代數(shù)題各一道,讓他們自由選擇一道題進(jìn)行解答.50名同學(xué)選題情況如下表:
幾何體代數(shù)題總計(jì)
男同學(xué)22830
女同學(xué)81220
總計(jì)302050
(Ⅰ)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?
(Ⅱ)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
參考公式和數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(k2≥k)0.100.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知以A為圓心的圓(x-2)2+y2=64上有一個(gè)動(dòng)點(diǎn)M,B(-2,0),線段BM的垂直平分線交AM于點(diǎn)P,點(diǎn)P的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)過(guò)A點(diǎn)作兩條相互垂直的直線l1,l2分別交曲線E于D,E,F(xiàn),G四個(gè)點(diǎn),求|DE|+|FG|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(m-1,2),且$\overrightarrow{a}$≠$\overrightarrow$,若($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則實(shí)數(shù)m=( 。
A.2B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若(2x+$\frac{1}{\root{3}{x}}$)n的展開(kāi)式中各項(xiàng)系數(shù)之和為729,則該二項(xiàng)式的展開(kāi)式中x2項(xiàng)的系數(shù)為( 。
A.80B.120C.160D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)函數(shù)f(x)=n-1,x∈[n,n+1],n∈N,則函數(shù)g(x)=f(x)-log2x的零點(diǎn)個(gè)數(shù)是(  )
A.1B.2C.3D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.甲、乙兩艘輪船駛向一個(gè)不能同時(shí)停泊兩艘輪船的碼頭,它們?cè)谝粫円箖?nèi)任何時(shí)刻到達(dá)是等可能的.如果甲船和乙船的停泊時(shí)間都是4小時(shí),求它們中的任何一條船不需要等待碼頭空出的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知x=-1是函數(shù)f(x)=(ax2+bx+c)ex(a,b,c∈R)的一個(gè)極值點(diǎn),四位同學(xué)分別給出下列結(jié)論,其中有一個(gè)結(jié)論是一定不成立的,則這個(gè)結(jié)論是(  )
A.a=0B.b=0C.c≠0D.a=c

查看答案和解析>>

同步練習(xí)冊(cè)答案